
Attention with Bias

Get FlashBias kernel at
https://github.com/thuml/FlashBias

wuhaixu98@gmail.com

FlashBias: Reach the Theoretical Efficiency Upper Bound

Tsinghua University

Key Challenge: Attention Bias is not sparse.

Ø Why FlashAttention is fast? Underlying low rank assumption

SwinV2-B (R=16, SVD decomp) 0.473s→0.190s

AlphaFold 3 (R=94, Neural decomp) 26.8s→18.2s

Ø FlashBias based on low-rank compressed sensing theory

FlashBias: Fast Computation of Attention with Bias
Haixu Wu, Minghao Guo, Yuezhou Ma, Yuanxu Sun, Jianmin Wang, Wojciech Matusik, Mingsheng Long#

Flex/FlashAttention Fails, Try FlashBias!
1.5x speedup for Pairformer in Alphafold 3
2x speedup for Swin Transformer v2

Pangu-Weather

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [24] for computer vision, ALiBi bias is used in language modeling [29] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [26], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5→ speedup for AlphaFold and over 2→ speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [39] contains queries q ↑ RN→C , keys k ↑ RM→C and values v ↑ RM→C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk↑
↓
C

+ b)v. (1)

2

Have to load NxN bias matrix from HBM

SRAM
19 TB/s
(20 MB)

HBM
1.5 TB/s
(40 GB)

Query, Key, Value, Bias

Results

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Given Sequence len N, Channel dim C, SRAM size S and C=𝛼N, S=𝛽NC

1) FlashAttention IO Complexity is Θ 1 + !
" 𝛽 smaller than standard attention

2) Suppose attention weight is of rank R, 𝛼 ≥ #
$ (determines the optimal speedup)

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

1) Low-rank Decomp

2) Fast compute

Theorem: FlashBias achieves optimal efficiency guaranteed by compressed sensing theory

Three concrete instantiations for decomposition: Exact, SVD and Neural Decomp

speedup attention with bias. Further, compared to the official implementation, FlashBias can reduce
60% running time and 27% memory cost, which is valuable for real-time development.

Table 4: Experiment of SwinV2-B on ImageNet-1K. #Time
and #Mem correspond to inference efficiency on A100 per
batch. Offline calculation of SVD for all biases takes 4.79s.

Method Acc@1 Acc@5 Time(s) Mem(MB)

Official Code 87.144% 98.232% 0.473 12829
Pure FlashAttention 9.376% 19.234% 0.180 3957

FlashAttention with Bias 87.142% 98.232% 0.230 11448
FlexAttention [11] 87.142% 98.232% 2.885 25986
INT8 PTQ 86.46% Around 22% speed up

FlashBias (Ours) 87.186% 98.220% 0.190 9429

More importantly, FlashBias will not
affect the performance, where the top-
5 accuracy drops less than 0.02% and
the fluctuation of the top-1 accuracy
(+0.042%) is within the standard de-
viation. In particular, even using well-
established quantization techniques
will still cause a 0.64% top-1 accu-
racy drop for 22% speedup according
to the FasterTransformer document3.
This comparison demonstrates that the
low-rank property is a principal basis
for fast computation of attention.

Also, FlexAttention seriously degenerates in SwinV2-B. This is because, unlike experiments in
Section 4.1, Swin Transformer’s bias matrices are different in value and shape among different layers,
which requires recompilation each time. This issue has also been mentioned by FlexAttention’s author
as “If you are adding a [B, H, N, N] bias tensor, then you honestly shouldn’t be using FlexAttention”4.

4.4 Scientific Deep Models

In addition to language and vision tasks, scientific problems usually involve rich domain-specific prior
knowledge; thereby, attention bias also widely exists in scientific Transformers. Here we evaluate
FlashBias in two representative models: Transformer-based PDE solvers [42] and AlphaFold 3 [1].

Transformer-based PDE solvers Attention mechanism has been proven equivalent to a Monte-
Carlo approximation of the integral operator [21], justifying its theoretical foundation for solving
partial differential equations (PDEs). However, in processing complex geometries, the attention
mechanism may fall in perceiving the 3D space, encouraging the utilization of spatial distance prior.
Here we follow the driving car simulation task in [42], whose input is the position of computation
mesh points and output is the physics quantities on these points. We test FlashBias on an 8-layer
Transformer solver with a 3D distance bias described in Example 3.5. Each layer contains attention
with 128 hidden dimensions and 8 heads, as well as a feedforward network with 256 hidden channels.

To approximate the adaptive mesh in numerical methods [35], we include a token-wise learnable
weight ωi for the 3D distance bias in each head of every layer, i.e. f(xq,i,xk,j) = ωi→xq,i ↑ xk,j→

2
2.

Unlike bias discussed in ALiBi [29] or SwinV2 [24], the learnable weights require the training process
to record the gradient of the bias matrix, posing a challenging efficiency issue in backpropagation.

Table 5: Experiments of Transformer PDE solvers. The efficiency metrics are recorded under a batch
size of 1 in the format of #Mem (GB) / #Time (s/100iters). Accuracy comparisons are in Appendix F.

Method (Learnable Bias)
Training Phase Inference Phase

8192 16384 32186 8192 16384 32186

FlashAttention 12.8 / 15.4 OOM OOM 4.54 / 5.46 15.3 / 21.2 OOM
FlexAttention Not supported in current version 21.9 / 184.0 OOM OOM

FlashBias (Ours) 1.46 / 4.54 2.02 / 14.7 2.97 / 51.1 0.98 / 1.22 1.03 / 3.48 1.13 / 12.7

Results FlashBias is the only method that can support training of the Transformer solver on 32186
points (Table 5), which also presents a significant memory and running time advantage compared
with other methods. Notably, FlashAttention and FlexAttention cannot support learnable bias training
well, as they need to record dense gradient matrices, further highlighting the practicality of FlashBias.

AlphaFold 3 for protein folding As a significant progress of AI for science, AlphaFold 3 [1]
employs an elaborate architecture. Specifically, its core design, Pairformer, contains 144 attention

3FasterTransformer released by NVIDIA.
4Discussion about FlexAttention with dynamic bias matrix.

9

Ack: AlphaFold 3 is based on the Protenix from ByteDance

Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss → pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [26].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ω̂q,ω1 , ω̂k,ω2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix D for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.

10

Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss → pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [26].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ω̂q,ω1 , ω̂k,ω2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix D for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.

10

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

GPT-2 with ALiBi (R=2, Exact decomp)

Speed up without any loss of accuracy
Surpass FlashAttention, PyTorch SDPA, xFormers

Easy to use API: Try FlashBias!
>> from flash_bias_triton import flash_bias_func
>> output = flash_bias_func(q, k, v, q_bias, k_bias,
 mask=None, causal=False,
 softmax_scale=1/math.sqrt(headdim))

SV
D

D
ec

om
p

O
rig

in
al

Bi
as

 M
at

rix

Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ωq,ωk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Domain Bias / Model Type

Language ALiBi [29] (a)

Vision Swin Trans. [24] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [→|→] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ωq(xq)ωk(xk)→, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ωq,ωk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [29] in language models). Given xq = [1, · · · , N],xk = [1, · · · ,M], the
ALiBi bias is calculated as f(xq,i,xk,j) = i↑ j, which can be directly decomposed into a low-rank
formalization by defining ωq(xq,i) = [1, i] and ωk(xk,j) = [↑j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [42], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ↓ RN↑3

record the 3D spatial positions of N computation points, where xq,i ↓ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ↔xq,i ↑ xk,j↔

2
2, it can be exactly decomposed as:

ωq(xq,i) = [x2
q,i,0, 1,↑2xq,i,0,x

2
q,i,1, 1,↑2xq,i,1,x

2
q,i,2, 1,↑2xq,i,2],

ωk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [24] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ↗M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ω̂q,ω1 , ω̂k,ω2 : RC→

↘ RR to approximate factor functions ωq and ωk,
which is supervised by the following objective function:

min
ω1,ω2

L(xq,xk) = ↔ω̂q,ω1(xq)ω̂k,ω2(xk)
→
↑ f(xq,xk)↔

2
2. (5)

Here ε1, ε2 are learnable parameters, which can be optimized by fine-tuning ε1, ε2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ω̂q,ω1 , ω̂k,ω2 have
been well optimized, they can be directly applied to all future inference.

5

Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ωq,ωk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Domain Bias / Model Type

Language ALiBi [29] (a)

Vision Swin Trans. [24] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [→|→] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ωq(xq)ωk(xk)→, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ωq,ωk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [29] in language models). Given xq = [1, · · · , N],xk = [1, · · · ,M], the
ALiBi bias is calculated as f(xq,i,xk,j) = i↑ j, which can be directly decomposed into a low-rank
formalization by defining ωq(xq,i) = [1, i] and ωk(xk,j) = [↑j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [42], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ↓ RN↑3

record the 3D spatial positions of N computation points, where xq,i ↓ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ↔xq,i ↑ xk,j↔

2
2, it can be exactly decomposed as:

ωq(xq,i) = [x2
q,i,0, 1,↑2xq,i,0,x

2
q,i,1, 1,↑2xq,i,1,x

2
q,i,2, 1,↑2xq,i,2],

ωk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [24] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ↗M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ω̂q,ω1 , ω̂k,ω2 : RC→

↘ RR to approximate factor functions ωq and ωk,
which is supervised by the following objective function:

min
ω1,ω2

L(xq,xk) = ↔ω̂q,ω1(xq)ω̂k,ω2(xk)
→
↑ f(xq,xk)↔

2
2. (5)

Here ε1, ε2 are learnable parameters, which can be optimized by fine-tuning ε1, ε2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ω̂q,ω1 , ω̂k,ω2 have
been well optimized, they can be directly applied to all future inference.

5

,

Test Phase Train Phase

2x 1.3x

Inference: 52.5→91.6TFLOPs/s; Train: 42.7→51.8TFLOPs/s

