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A Practical PDE Solver Should Handle
Large-Scale Unstructured Meshes
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(a) Shape-Net Car

(b) AirfRANS

Previous work: Geometric deep learning,
Linear Transformer (directly applying
attention to mesh points, over 10k tokens)

RULER: The effective length of GPT-4 is 64k

Challenges: Geometry, Physics, Efficiency

Key Insight: Getting rid of superficial and
unwieldy meshes, learning intrinsic
physical states underlying geometries
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All the code, data and scripts are in
https://github.com/thuml/Transolver

Transolver: Making Transformers good at solving PDEs
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» Tokenize: Learning physics-aware tokens
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(2) Separate feature to M “slices”
(@ Globally weighted sum features on

each slice for M physics-aware tokens

> Physics-Attention: Applying attention to learned physics tokens

Physics-Attention is equivalent to learnable integral on input domain

22% Error Reduction on Six Standard Benchmarks
Excels in Industrial-level simulations

» More than 20 baselines: FNO, LSM, GNOT, ONO, GUNet, etc
» Number of Mesh points: ranging from 972 to 32,186

Showcases: Complex geometries, hybrid physics
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Scalability: Benefit from large data and model
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00D generalizability: Test on unseen PDEs

\POINT CLOUD STRUCTURED MESH REGULAR GRID UNSTRUCTURED MESH

=7

MODEL (x107°) \ ELASTICITY PLASTICITY AIRFOIL PIPE NAVIER-STOKES DARCY SHAPE-NET CAR AIRFRANS
0.86 0.17 0.59 0.47 11.95 0.65 98.42 99.64

LIRUER 0101 SOTA‘ (GNOT)  (OFORMER) (LSM) (GNOT)  (ONO) (LSM) (3D-GEOCA) (GRAPHSAGE)

TRANSOLVER 0.64 0.12 0.53 0.33 9.00 0.57 99.35 99.78

PROMOTION 25.6% 29.4% 10.2% 29.7% 24.7% 12.3% - -

We list Spearman’s correlation of drag/lift coefficient for Car and AirfRANS, rL2 for others

| OOD REYNOLDS | OOD ANGLES

MODELS Re ~10*-~10° /-:_
| Cet  pet | Gt pot ¢ )——

SIMPLE MLP 0.6205 0.9578 |0.4128 0.9572 \—-""—

GRAPHSAGE (2017) 0.4333 0.9707 [0.2538 0.9894

POINTNET (2017) 0.3836 0.9806 [0.4425 0.9784 /\_

GRAPH U-NET (2019) |0.4664 0.9645 |0.3756 0.9816 Re>~10° =

MESHGRAPHNET (2021) | 1.7718 0.7631 [0.6525 0.8927 \_—/

GNO (20204) 0.4408 0.9878 |0.3038 0.9884

GALERKIN (2021) 0.4615 0.9826 |0.3814 0.9821

GNOT (2023) 0.3268 0.9865 [0.3497 0.9868 Amhdimc@

GINO (20234) 0.4180 0.9645 |0.2583 0.9923

TRANSOLVER (OURS) [0.2996 0.9896 [0.1500 0.9950




