

MotionRNN: A Flexible Model for Video Prediction with Spacetime-Varying Motions

Haixu Wu, Zhiyu Yao, Jianmin Wang, Mingsheng Long (⊠) School of Software, BNRist, Tsinghua University, China

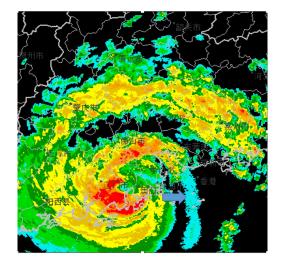
{whx20,yaozy19}@mails.tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

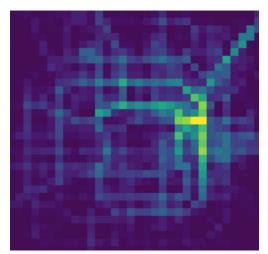
Haixu Wu

 Wingsheng Long

Jianmin Wang

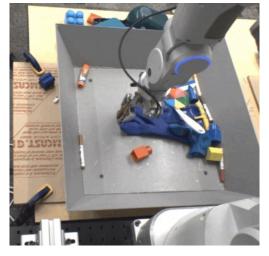
Video Prediction





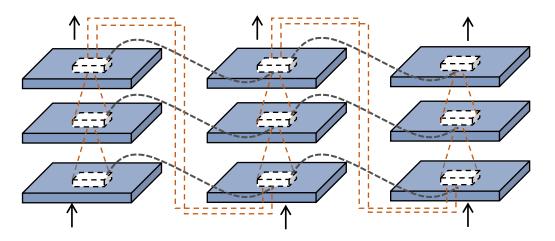
Precipitation nowcasting Radar

Traffic Planning TaxiBJ



Visual Foresight Bair Robot Pushing

Pedestrians Forecasting Human3.6M

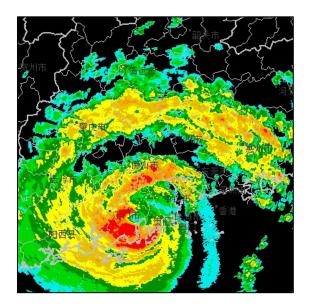


LSTM-based Predictive Models Modeling Spatiotemporal State Transition with gate mechanism. Gate are easily saturated.

Motion Vanished.

ConvLSTM[Shi et al. NeurIPS15], PredRNN[Wang et al. NeurIPS17], MIM[Wang et al. CVPR19], E3D-LSTM[Wang et al. ICLR19]

Spacetime-Varying Motions

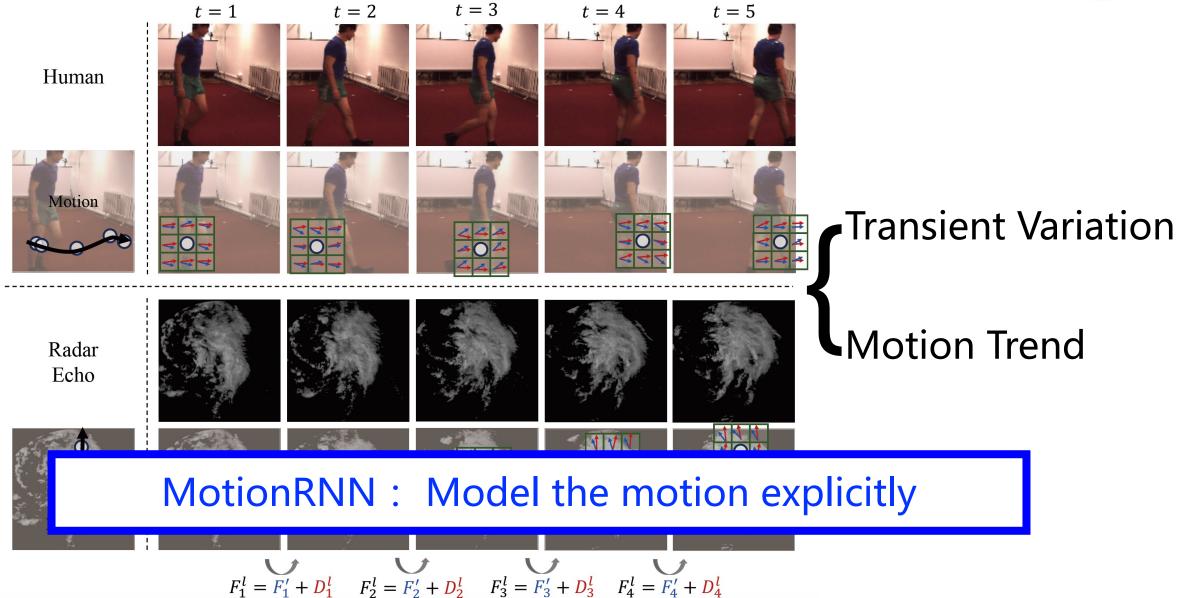


Clouds generation, dissipation, translation, deformation...

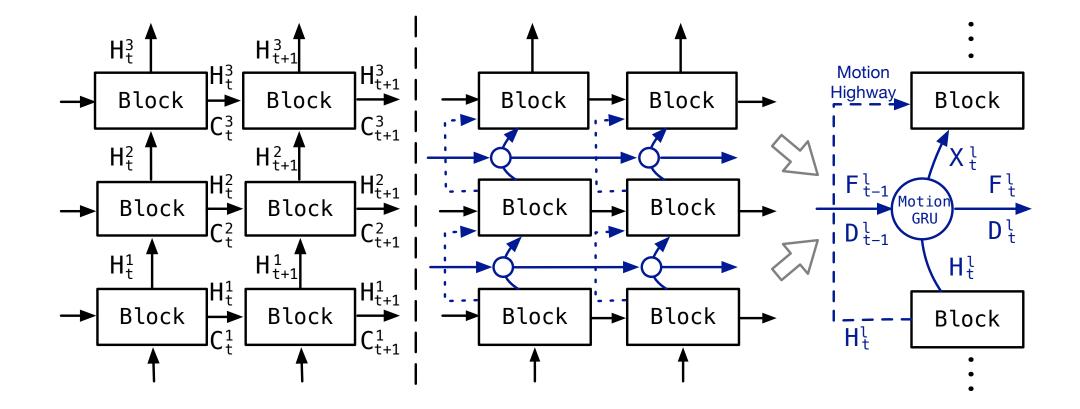
Change direction, speed, and body movement...

Challenge: Real-world motions are ever-changing

Motion Decomposition



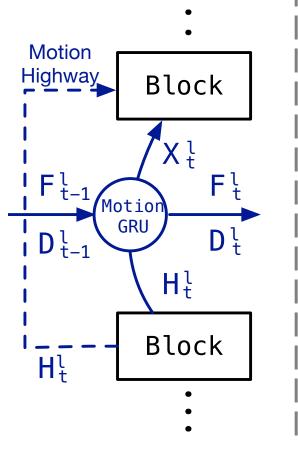
MotionRNN



Flexible Model: can be applied to any LSTM-based models

MotionRNN

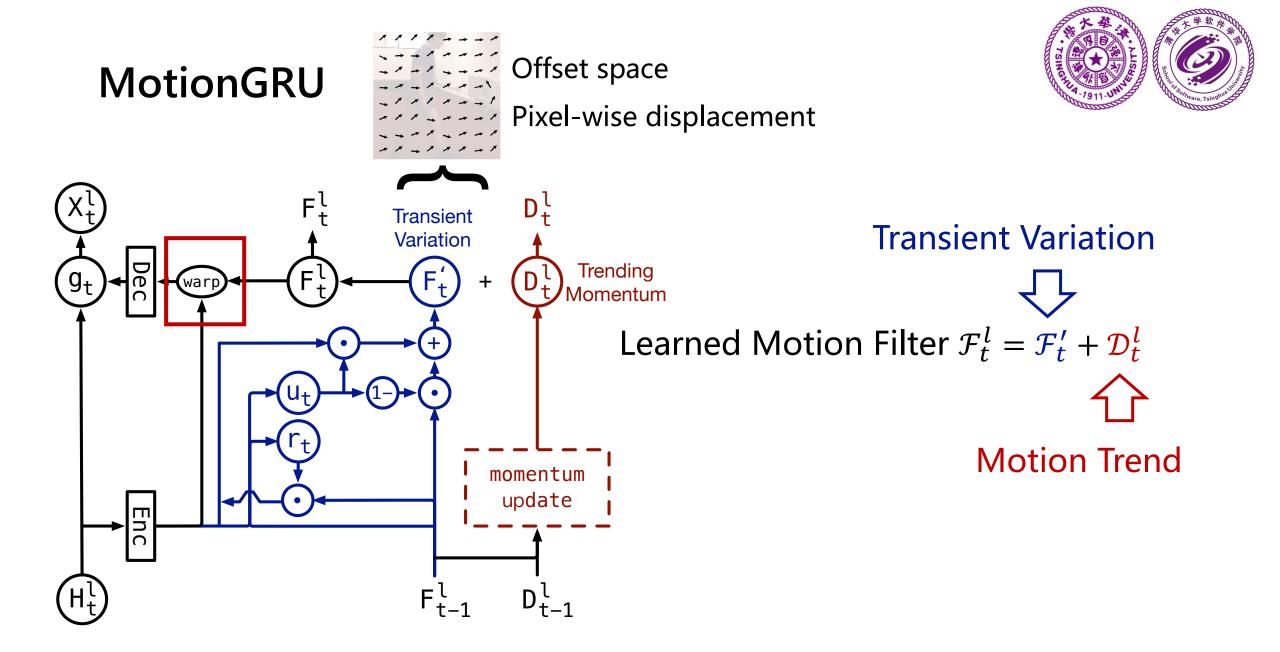
MotionGRU



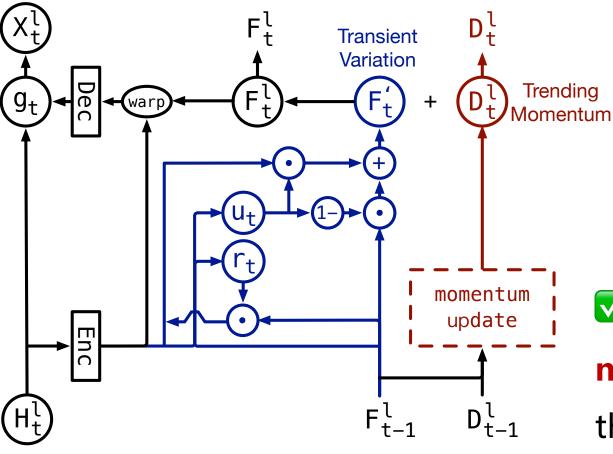
Modeling the motion explicitly. $\mathcal{X}_{t}^{l}, \mathcal{F}_{t}^{l}, \mathcal{D}_{t}^{l} = \operatorname{MotionGRU}(\mathcal{H}_{t}^{l}, \mathcal{F}_{t-1}^{l}, \mathcal{D}_{t-1}^{l})$ $\mathcal{H}_{t}^{l+1}, \mathcal{C}_{t}^{l+1} = \operatorname{Block}(\mathcal{X}_{t}^{l}, \mathcal{H}_{t-1}^{l+1}, \mathcal{C}_{t-1}^{l+1}) \bigoplus \operatorname{LSTM-based}_{\operatorname{Predictive Block}}$ $\mathcal{H}_{t}^{l+1} = \mathcal{H}_{t}^{l+1} + (1 - o_{t}) \odot \mathcal{H}_{t}^{l},$

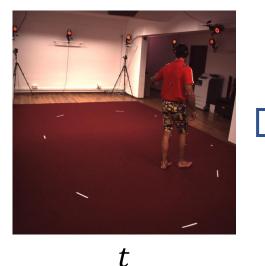
Motion Highway

Balance the invariant part and the changeable motion part.



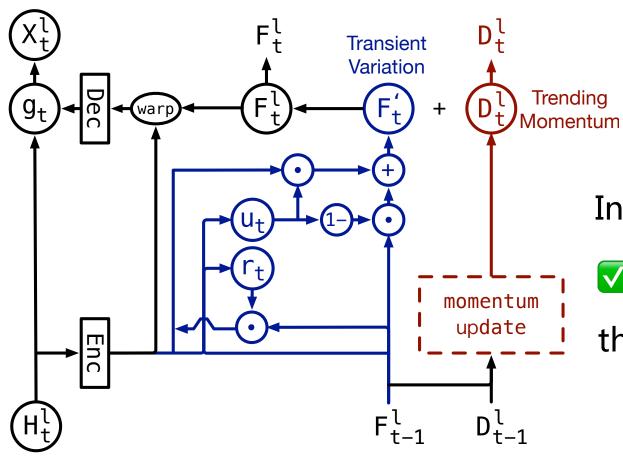
Transient Variation

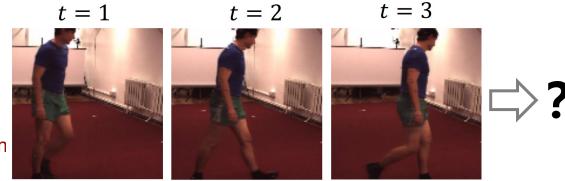




✓Using ConvGRU to model the **motion filter** transition and maintain the spatiotemporal coherence.

Motion Trend





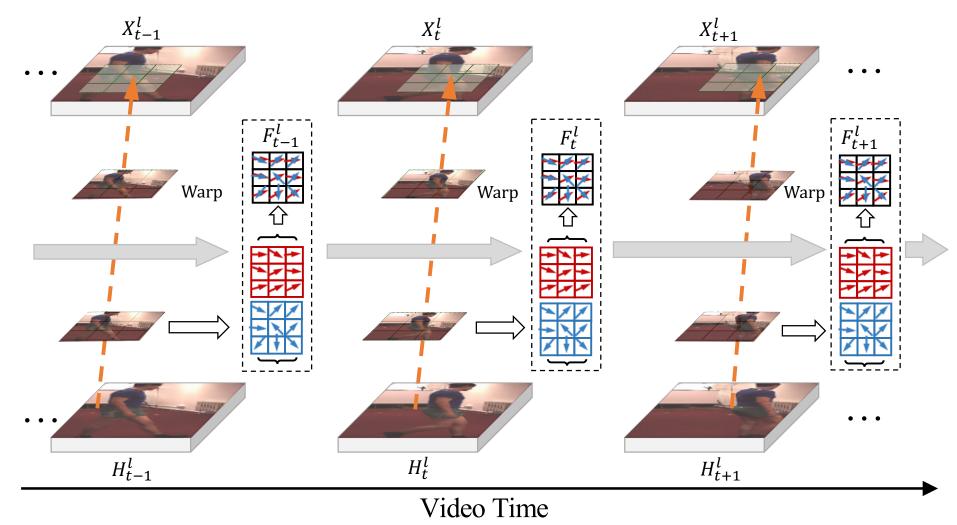
Inference the trend: with future unknown

✓Using Temporal Difference to estimate the motion tendency.

$$\mathcal{D}_{t}^{l} = \mathcal{D}_{t-1}^{l} + \alpha \left(\mathcal{F}_{t-1}^{l} - \mathcal{D}_{t-1}^{l} \right)$$

Will converge to the weighted sum of motion filters.

Overall Procedure



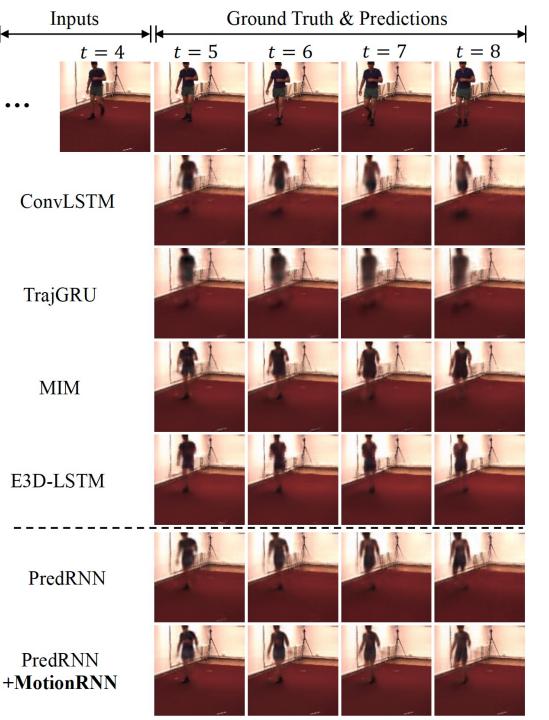
Human Motion (Human3.6M)

Method	SSIM	MSE/10	MAE/100	FVD
TrajGRU [22]	0.801	42.2	18.6	26.9
Conv-TT-LSTM [26]	0.791	47.4	18.9	26.2
ConvLSTM [21]	0.776	50.4	18.9	28.4
+ MotionRNN	0.800	44.3	18.6	26.9
MIM [37]	0.790	42.9	17.8	21.8
+ MotionRNN	0.841	35.1	14.9	18.3
PredRNN [36]	0.781	48.4	18.9	24.7
+ MotionRNN	0.846	34.2	14.8	17.6
E3D-LSTM [35]	0.869	49.4	16.6	23.7
+ MotionRNN	0.881	44.5	15.8	21.7

Based on PredRNN, on Human3.6M

MSE promotion: **48.4**→**34.2**

Achieves **sate-of-the-art** performance



Parameter and Computation Efficiency

Method	Params(MB)	FLOPs(G)	$MSE\Delta$
ConvLSTM	4.41	31.6	-
+ MotionRNN	5.21(† 18%)	36.6(†16%)	12%
PredRNN	6.41	46.0	-
+ MotionRNN	7.01(†9.3%)	49.5(†7.6%)	29%
MIM	9.79	70.2	-
+ MotionRNN	10.4(†6.2%)	73.7(† 5.0%)	18%
E3D-LSTM	20.4	292	-
+ MotionRNN	21.3(†4.4%)	303(† 3.8%)	10%

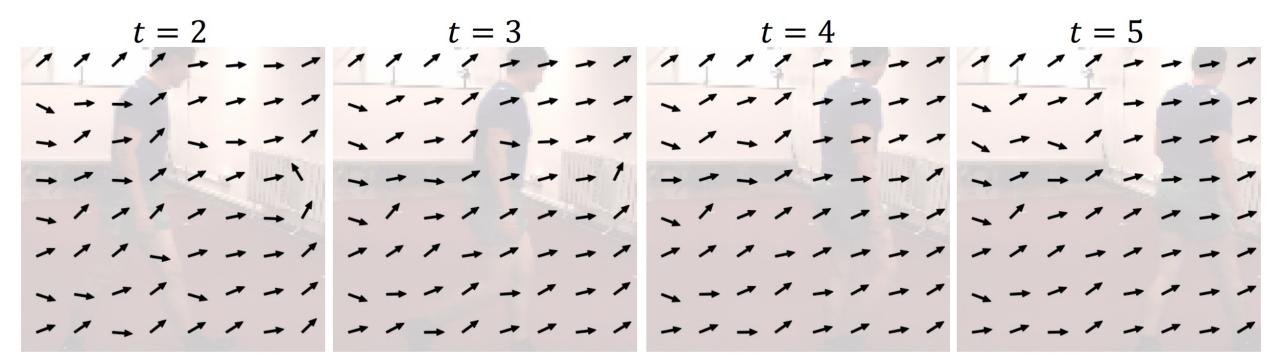
Based on PredRNN , MotionRNN achieves 29%

improvement with little extra Params and FLOPS.

Ał	olation Study Motion Highwa		ent Vaı 13% ↑		-		大学教学
	12% ↑	\sum	\bigcirc		otion T 9% 1		
[Method	MH	TV	TM	$\frac{MSE}{10}$	Δ	
ſ	PredRNN				48.4	-	
	+ Motion Highway				42.5	12%	
	+ MotionGRU w/o Momentum				41.5	14%	
	+ MotionGRU w/o Transient			\checkmark	43.5	10%	
Ĩ	+ MotionGRU			\checkmark	40.3	17%	
	+ MotionRNN w/o Momentum				38.9	20%	
	+ MotionRNN w/o Transient	\checkmark		\checkmark	40.6	16%	
ſ	+ MotionRNN	\checkmark	\checkmark	\checkmark	34.2	29%	

Ablation of Motion Highway





Visualization of learned motion trend \mathcal{D}_t^1

Precipitation Nowcasting (Radar Shanghai)

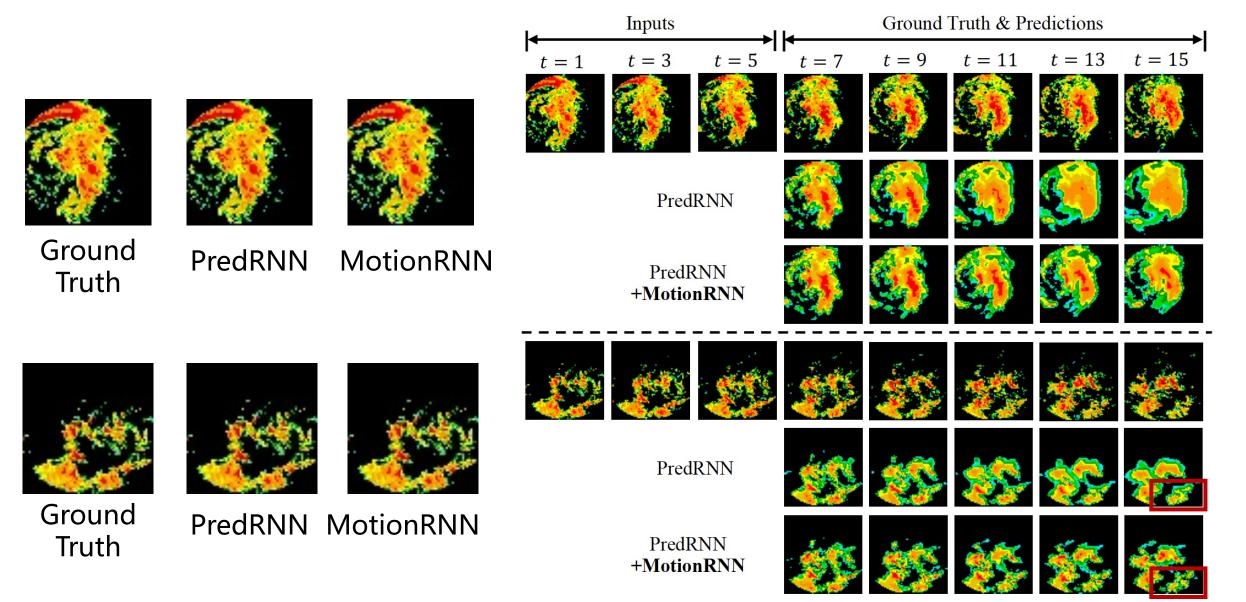
Method	SSIM	GDL	CSI30	CSI40	CSI50
TrajGRU	0.815	13.9	0.576	0.545	0.484
Conv-TT-LSTM	0.820	13.6	0.571	0.530	0.469
ConvLSTM	0.837	12.3	0.624	0.605	0.560
+ MotionRNN	0.850	11.9	0.646	0.629	0.586
MIM	0.849	11.3	0.654	0.646	0.609
+ MotionRNN	0.863	11.1	0.668	0.654	0.614
PredRNN	0.841	11.9	0.633	0.622	0.581
+ MotionRNN	0.865	10.9	0.678	0.664	0.623
E3D-LSTM	0.842	12.7	0.615	0.615	0.590
+ MotionRNN	0.880	9.67	0.671	0.659	0.621

 $CSI = \frac{Hits}{Hits+Misses+FalseAlarms}$

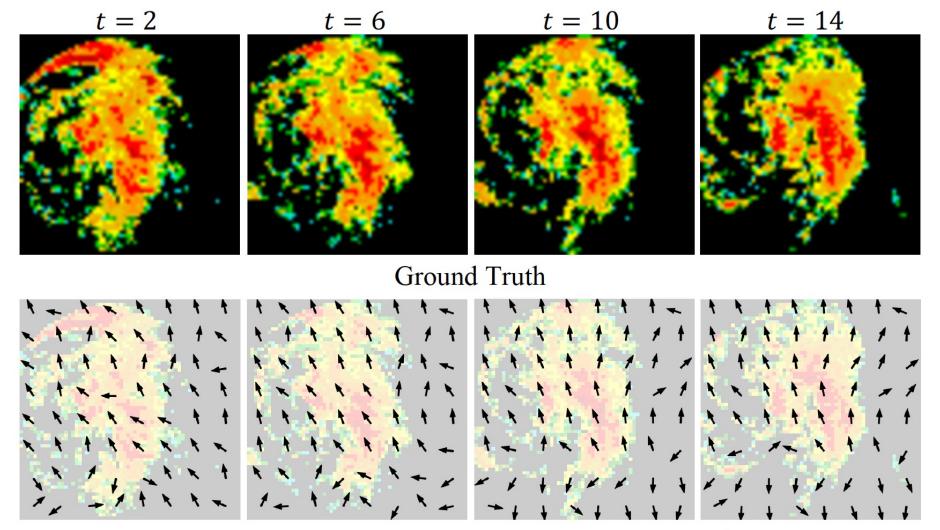
MotionRNN can significantly improve the prediction of

cloud with **high density**.

Precipitation Nowcasting (Radar Shanghai)



Motion Trend Visualization

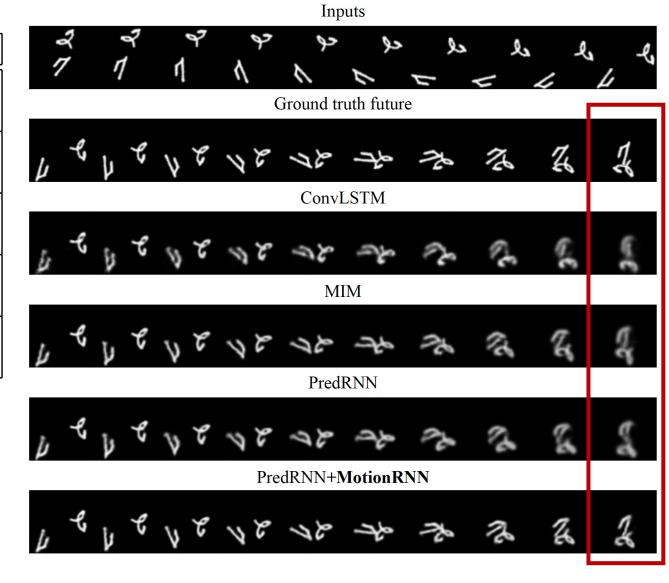


MotionRNN Learned Trending Momentum D_t^1

Varied Moving Digits

Method	MSE	SSIM	PSNR	GDL
TrajGRU	109	0.515	15.9	69.3
Conv-TT-LSTM	71.1	0.744	18.4	53.6
E3D-LSTM	57.6	0.852	19.7	44.6
+ MotionRNN	52.8	0.867	20.3	42.4
ConvLSTM	47.0	0.845	20.6	41.8
+ MotionRNN	44.4	0.861	20.9	40.3
MIM	34.6	0.888	22.3	34.6
+ MotionRNN	28.9	0.906	23.1	30.9
PredRNN	35.6	0.891	22.1	34.7
+ MotionRNN	25.1	0.920	24.0	27.7

Add **rotation and scaling** to digits. MotionRNN can greatly improve the **sharpness(GDL)** of prediction results.



- Based on motion decomposition, we design a new MotionGRU unit to obtain the motion trend and transient variation in a unified way.
- We propose the MotionRNN framework, which unifies the MotionGRU and a new **Motion Highway** structure to mitigate motion vanishing.
- Our MotionRNN is **flexible** to be applied together with a rich family of predictive models to yield consistent improvements and **SOTA** results.

Thank You! whx20@mails.tsinghua.edu.cn