
Towards Practical Neural PDE Solvers
From RoPINN to ProPINN: Improved Optimization and Architecture

Haixu Wu
Computational Design and Fabrication Group, MIT CSAIL

Dec 19, 2025

RoPINN ProPINN



Turbulence Atmospheric circulation

Real-world Phenomena

Stress

How to understand the world?

1



Turbulence Atmospheric circulation

Real-world Phenomena

Stress

How to understand the world?

Images? Videos? World Model?

1



Turbulence Atmospheric circulation

Real-world Phenomena

Stress

Beyond appearances, these phenomena are governed by scientific rules.

1



Partial Differential Equations

Extensive physics processes can be precisely described as PDEs.

3-D Navier-Stokes equations
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Difficulties in Solving PDEs

It is hard (usually impossible) to obtain the analytic solution of PDEs

Ø Birch and Swinnerton-Dyer conjecture

Ø Hodge conjecture

Ø Navier–Stokes existence and smoothness

Ø P versus NP problem

John von Neumann Peter LaxDavid Hilbert Richard Courant

Ø Riemann hypothesis

Ø Yang–Mills existence and mass gap

Ø Poincaré conjecture (Solved)

Millennium Prize Problems
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PDE Solvers

Classic Numerical Methods

FEM, Spectral, etcNew Task Results

Ø Recalculation for every new sample

Ø Each round will incur huge costs

Stable vs. Slow and Discretized

Days or even Months
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PDE Solvers

Neural PDE Solvers

Deep ModelsData Loss

Ø Training once, inference a lot

Ø Each round needs several seconds

An efficient / precise surrogate tool

( Ideally )

New Task Results

Classic Numerical Methods

FEM, Spectral, etcNew Task Results
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Ø Recalculation for every new sample

Ø Each round will incur huge costs

Stable vs. Slow and Discretized
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AI-empowered Simulation Software

https://www.ansys.com/products/simai https://altair.com/physicsai
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Overview of Neural PDE Solvers

Pure Physics

• Numerical Solvers (FEMs)

• Physics-Informed Neural Networks 

/ Neural-FEMs

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)

Hybrid Data-Physics

• Hybrid Simulators (NCLaw)

• Physics-Informed Neural Operator 

(PINO)

Pure Data

• Neural Operators / Neural 

Surrogates (DeepONet, Transolver)

• General Deep Models
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Physics-Informed Neural Networks (PINNs)

Enforcing outputs and gradients of deep 

models to satisfy target equations

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)
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Physics-Informed Neural Networks (PINNs)

Convection

𝜕𝑢
𝜕𝑡
+ 50

𝜕𝑢
𝜕𝑥

= 0

𝑥

𝑡

Raissi, M. et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019): 686-707.
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Physics-Informed Neural Networks (PINNs)

Convection
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Physics-Informed Neural Networks (PINNs)

Convection

𝜕𝑢
𝜕𝑡
+ 50

𝜕𝑢
𝜕𝑥

= 0

PINN Loss on Finite

Collocation Points
Sampling

(Informal define)  𝐿 = !"!
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%
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𝑥

𝑡

Raissi, M. et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems 
involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019): 686-707.
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Physics-Informed Neural Networks (PINNs)

Convection

𝜕𝑢
𝜕𝑡
+ 50

𝜕𝑢
𝜕𝑥

= 0

PINN Loss on Finite

Collocation Points
Sampling

Extremely elegant formalization (autodifferential gradient, explicit constraint)

but still has some underlying issues to be solved

𝑥

𝑡
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PINN Failure Modes

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurIPS 2021.

Convection Reaction-Diffusion
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PINN Failure Modes
Convection Reaction-Diffusion

Hard-to-Optimize

Loss Landscape

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurIPS 2021.
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A Long-Standing Challenge in DL: Optimization

He, et al. Deep Residual Learning for Image Recognition. CVPR 2026.
DeepSeek-V3 Technical Report. 2025 12

A plain neural network cannot benefit from adding layers.

Loss Spike
[Sho, 2025]

DeepSeek-V3: New architecture ensures stable training.

DeepSeek-V3



Haixu Wu Mingsheng LongJianmin WangHuakun Luo Yuezhou Ma

https://openreview.net/pdf?id=wZigMVFURkPaper Link:
https://github.com/thuml/RoPINNCode Link:

https://openreview.net/pdf?id=wZigMVFURk
https://github.com/thuml/ProPINN


Rethinking the PINN Formalization

1. Point Optimization

2. Insufficient Enforcement of Physics Loss
𝜕𝑢
𝜕𝑡 + 50

𝜕𝑢
𝜕𝑥 = 0

Ø Train on limited collocation points but expect the model to generalize to the whole domain.

Ø Train with “first-order” loss but expect the model to satisfy the infinite-order constraint.
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Direct Solution: High-order regularization

ü Add the high-order constraints of PDEs as regularization terms to the loss function

✗ Calculating high-order derivatives can be extremely time-consuming and unstable

Yu, Jeremy et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, 
Computer Methods in Applied Mechanics and Engineering, 2022

Differential function
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Region Optimization V.S. Point Optimization

Point Optimization: 

Region Optimization: 
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Theoretical Analysis

Ø Generalization Error in Expectation

Ø Basic Assumption
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Input Domain Collocation Points



Theoretical Analysis: Generalization Bound

Ø Canonical Point Optimization: Ω' = 0

Cannot benefit from introducing “region”

Ø Globally sampling points: Ω' = Ω

Equivalent to directly optimizing the loss defined on Ω, generalization error will be reduced to zero.

Cannot be satisfied in practice, which requires the precise calculation of the integral of 𝛀

17

Linearly related to region size



Practical Algorithm

① Monte Carlo Approximation

② Trust Region Calibration
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Part 1: Monte Carlo approximation

Ø Approximate the region optimization gradient by Monte Carlo approximation

19

𝑥 + Ω!! 𝑥

𝑥"
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Training Iterations

Sampling within a region



Part 1: Monte Carlo approximation

Ø Approximate the region optimization gradient by Monte Carlo approximation

Ø This sampling-based design is also equivalent to a high-order loss function

Important Note: This design is tailored to PINN loss, 

where we can precisely calculate the loss at any sampled point.
19

Sampling within a region



Part 1: Monte Carlo approximation

20

Ø Approximate the region optimization gradient by Monte Carlo approximation



Part 2: Trust Region Calibration

Gradient variance within a region.

Region 𝑥 + Ω!𝑥𝑥%

21
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Part 2: Trust Region Calibration

Ø A larger region size 𝑟: better generalization but will bring larger gradient estimation error.

Gradient variance within a region.

Region 𝑥 + Ω!𝑥𝑥%

Recall Generalization error:

21
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Part 2: Trust Region Calibration

Adjust region size according to the gradient variance 

among successive iterations.

ü Similar ideas are widely used in deep learning optimizers, such as Adam and AdaGrad, which adopt 

multi-iteration statistics as the momentum of gradient descent.
22

Region size



Part 2: Trust Region Calibration

ü The gradient of each iteration can be effectively obtained by retrieving the computation graph. 

RoPINN has no extra gradient or backpropagation calculation w.r.t. point optimization.
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Training Iterations

(1)
Retrieve

Computation 
Graph

(3) 
Trust Region
Calibration

(2)
Gradient Variance

…



Part 2: Trust Region Calibration
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Theoretical Analysis

Generalization ∝ Ω'     Optimization ∝ −|Ω'|

Ø Canonical point optimization (Ω' = 0) and globally sampling points (Ω' = Ω) are fixed special cases.

RoPINN can adaptively balance optimization and generalization during training.
24

(1) Benefit from region opt (2) Gradient approximation error



Intuitive Understanding

𝑥

Ω

Point optimization: calculate gradient on the 

fixed collocation point in all iterations

𝜃"
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…
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Intuitive Understanding

𝑥 + Ω!!

𝑥
𝑥"

Ω

Point optimization: calculate gradient on the 

fixed collocation point in all iterations

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations
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𝑥 + Ω!!

𝑥
𝑥"

Ω

Point optimization: calculate gradient on the 

fixed collocation point in all iterations

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations

𝜃"

𝜃"#$
𝜃"#'

…
−𝛼"∇#ℒ(𝑢#! , 𝑥) −𝛼"$%∇#ℒ(𝑢#!"#

, 𝑥)

𝜃"

𝜃"#$ 𝜃"#'

−𝛼"∇#ℒ(𝑢#! , 𝑥" ) −𝛼"$%∇#ℒ(𝑢#!"#, 𝑥"$%)

𝑥"#$

26



Intuitive Understanding
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Intuitive Understanding
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Experiments

Ø Five base models: PINN, FLS, QRes, PINNsFormer, KAN

Ø 19 different PDE solving tasks: 1D-Reaction, 1D-Wave, Convection and PINNacle

27



Main Results

Ø Two typical baselines: 

gPINN (high-order regularization) 

vPINN (variational formalization)

ü RoPINN consistently boost all five 

PINN base models in all 19 PDEs.

ü RoPINN helps mitigate the “PINN 

failure modes” (see results of 1D-

Reaction and Convection).
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Algorithm Analysis: Region Size

ü Adaptively find the “balance point”: Even though we initialize the region size as distinct values, RoPINN

will progressively adjust the trust region size to similar values during training.

ü Affect convergence: If r is initialized as a value closer to the balance point, the training will converge 

faster. Too large a region size will decrease the convergence speed due to the optimization noise.
29



Algorithm Analysis: Sampling Points

Sampling more points in each region will bring a lower gradient estimation error, 

which will lead to larger region size, better convergence and final performance.
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Algorithm Analysis: Loss Landscape

“PINN failure modes” are not caused by limited model capacity but by a hard-to-optimize loss landscape.

Empowered by RoPINN, the loss landscape of PINN is significantly smoothed.

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurIPS 2021.
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More Showcases
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An Insight from the Proof Process

33

Ω

Ω

Proof Sketch (The Importance of Gradient Correlation)

(1) ℰ*+, can be bounded by a term relating to the 

expectation of distance between parameter θ optimized 

from different training sets.

(2) Region optimization paradigm brings a more “consistent” 

gradient direction than point optimization at each iteration.

What will happen if different collocation points have irrelevant gradients?

𝑥
𝑦

𝑥
𝑦

Better correlation



https://arxiv.org/pdf/2502.00803Paper Link:
https://github.com/thuml/ProPINNCode Link:

Haixu Wu Mingsheng LongJianmin WangYuezhou Ma Hang Zhou Huikun Weng

https://arxiv.org/pdf/2502.00803
https://github.com/thuml/ProPINN


Peculiar Phenomena in PINN Optimization

Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023

PINN loss values (PDE residuals) are very close to zero,

but the prediction error is still quite large.

34

Trivial
Solution



Peculiar Phenomena in PINN Optimization

Only IC and BC have the correct supervision of solution values.

Propagation hypothesis: “In order for PINNs to avoid converging to trivial solutions at interior points, 

the correct solution must be propagated from the initial/boundary points to the interior points.”

34
Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023

Trivial
Solution



Why Propagation Failure Happens?

Explanation from Daw et al.:
Some collocation points start converging to trivial solutions before the correct solution from 

initial/boundary points is able to reach them.

35
Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023

Trivial
Solution



Why Propagation Failure Happens?

A comparison between PINNs and FEMs:

Ø Start from a trivial estimation and the interior areas hold incorrect output supervision in the beginning

Ø PINNs suffer from propagation failure, but FEMs do not.

36

Trivial
Solution



PINNs v.s. FEMs

Explicit Implicit

37



PINNs v.s. FEMs

Active propagation

38



Understanding “Propagation”

Stiffness matrix: Force on the j-th node to make region balance when the i-th node has a unit displacement.

What does the “stiffness matrix” look like in PINNs?

39

𝑥/
𝑥0

Unit displacement



Understanding “Propagation”

The effect on x’ when we make an optimization step based on gradient at x.
40

Model
Parameter



Lower Gradient Correlation

Lower D-PINN, weak propagation.

41

Can be 
“blocked” here



Lower Gradient Correlation

Lower D-PINN, weak propagation.

A lower gradient correlation will cause non-active propagation.
Also answers why PINNs cannot benefit from large models:

A larger parameter space is more likely to cause orthogonal gradients.
41



Lower Gradient Correlation

C
on

ve
ct
io
n
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ProPINN with Active Propagation

Ensure an explicit interaction among multiple collocation points within a region.
Transformer-based models, such as PINNsFormer or SetPINN, can also enable this, but are less efficient.
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ProPINN with Active Propagation

Larger gradient correlation, better propagation.
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Visualization Comparison
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Vanilla PINN ProPINN



Training Dynamics

46

Training
Loss

Test
Loss



Complex Dynamics

Complex time-dependent 

2D fluid dynamics

Ground Truth ProPINN Prediction ProPINN Error FLS ErrorFLS Prediction

rRMSE = 0.2172 (21% error reduction) rRMSE = 0.2765 (Second Best)
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Scaling Performance

(a) ProPINN (b) Vanilla PINN

rM
AE

rM
AE

A larger parameter space is more likely to cause orthogonal gradients.

ProPINN releases the scaling capability of the neural network. Larger model, better performance. 
48

Lower 
error Larger 

error



Physics-Informed Neural Networks (PINNs)

Convection

𝜕𝑢
𝜕𝑡
+ 50

𝜕𝑢
𝜕𝑥

= 0

PINN Loss on Finite

Collocation Points
Sampling

𝑥

𝑡
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Extremely elegant formalization (autodifferential gradient, explicit constraint)

but still has some underlying issues to be solved



Open Question: Unlock the Deep Learning Capability

50

We need a general way to scale the capability of neural networks.

(such as a Transformer or a new optimization paradigm)

Kaplan et al. Scaling Laws for Neural Language Models, ArXiv preprint 2001.08361 (2020)



Recent Progress of PINNs

Wang et al. Simulating Three-dimensional Turbulence with Physics-informed Neural Networks, ArXiv preprint 2507.08972 (2025)

Ø Adopt a series of 

tricks to enable stable 

training

Ø First time to support 

3D turbulence 

simulation

①

②

③

④
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Recent Progress of PINNs

Wang et al. Discovery of Unstable Singularities, ArXiv preprint 2509.14185 (2025)
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Overview of Neural PDE Solvers

Pure Physics

• Numerical Solvers (FEMs)

• Physics-Informed Neural Networks 

/ Neural-FEMs

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)

Hybrid Data-Physics

• Hybrid Simulators (NCLaw)

• Physics-Informed Neural Operator 

(PINO)

Pure Data

• Neural Operators / Neural 

Surrogates (DeepONet, Transolver)

• General Deep Models

53



https://github.com/thuml/Neural-Solver-Library

ü 17 different PDE solvers

ü 6 standard benchmarks, PDEBench and 

design tasks 

Welcome to join us and add a new feature 
to this Library!

Code Link:

Neural-Solver-Library

54
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