H I .
/ >
/ - 1
o™ Tsinghua University

Towards Practical Neural PDE Solvers

From RoPINN to ProPINN: Improved Optimization and Architecture

Haixu Wu
Computational Design and Fabrication Group, MIT CSAIL
a3 hs[s] [m] E Dec 19, 2025
] .;:I
1%
O et

RoPINN ProPINN

Real-world Phenomena

Turbulence Atmospheric circulation Stress

How to understand the world?

Real-world Phenomena

Turbulence Atmospheric circulation Stress

How to understand the world?

Images? Videos? World Model?

Real-world Phenomena

Turbulence Atmospheric circulation Stress

Beyond appearances, these phenomena are governed by scientific rules.

Partial Differential Equations

Extensive physics processes can be precisely described as PDEs.

v, Ovy v,
il mels e
ov, avx ov, ov, oP azvx 0%v, 0%,
Pl ot gy T dy Ve az) _$+ﬂ(0x2 ay T 922)+ 08
avy avy avy va OP azvy azv,, azvy
o i T gy g oy Mo B o e
ov, ov, dv, v, oP 0d*v, 82vz 0%v,

PGt Ty P) T TG T Y o) P
3-D Navier-Stokes equations

ou, ou,
. = , Eyy =—, £_=

6x Gy (’92

u, Oou, 1(0u, ou,
£y = ° , € =T +
82 Ox 2\ 0z 0Oy

3-D Stress-Strain relations

Difficulties in Solving PDEs

Peter Lax Richard Courant
Millennium Prize Problems
» Birch and Swinnerton-Dyer conjecture » Riemann hypothesis
» Hodge conjecture » Yang—Mills existence and mass gap
» Navier-Stokes existence and smoothness » Poincaré conjecture (Solved)

> P versus NP problem

It is hard (usually impossible) to obtain the analytic solution of PDEs

PDE Solvers

Classic Numerical Methods

New Task —>

FEM, Spectral, etc

—> Results

» Recalculation for every new sample

» Each round will incur huge costs

Stable vs. Slow and Discretized

\nsys 55

DASSAULT
SYUSTEME 3,

SIEMENS (.A HEXAGON

Discretized Mesh

Days or even Months

PDE Solvers

Classic Numerical Methods Neural PDE Solvers
New Task —> FEM, Spectral, etc = ——> Results Data 3 Deep Models > Loss
OO O O
OO OO
: OO OO
» Recalculation for every new sample 1 00 00 ~
New Task o0 OO Results
» Each round will incur huge costs
Stable vs. Slow and Discretized » Training once, inference a lot

> Each round needs several seconds

2 DASSAULT
\nsys p S SHSTEMESs, An efficient / precise surrogate tool
SIEMENS "4 HEXAGON (1deally)

A Booming Direction

ICLR 2024 Workshop on
Al4DifferentialEquations in Science

}‘,. . NEURAL INFORMATION
”‘.i. , PROCESSING SYSTEMS

Foundation Models for Science: Progress, Opportunities, and

Challenges
at NeurlPS 2024
Dec. 15, 2024, Vancouver, Canada
Meeting Room #202 - 204

NeurlPS site:

2024

ICLR 2025
'~ XAlaScience: From
Understanding Model
Behavior to Discovering New

Scientific Knowledge

@ April 27, 2025, co-located with ICLR 2025

ICML 2025

-

Al for Scientific Discovery: From Theory to Practice

Schedule Call for Papers

NeurlPS 2025

2025

70

60

50

40

30

20

10

~— With Physics / PDE
— With World Model

62
40
36
17
13 I

2023 2024 2025

Accepted NeurlPS Papers

Al-empowered Simulation Software

Ansys SimAlI
Predict at the Speed of Al

Altair® PhysicsAl™ Geometric Deep Learning

Better Design Insights Up to 1000x Faster than Solver Simulation

AI-AUGMENTED SIMULATION

0 minutes

Altair® physicsAl™

Al simulation enables model predictions
up to 1000x faster

TRADITIONAL SIMULATION

2 hours

https://www.ansys.com/products/simai https://altair.com/physicsai

https://www.ansys.com/products/simai
https://altair.com/physicsai

Overview of Neural PDE Solvers

Small data Some data Big data
Data
Physics
Lots of physics Some physics No physics

Pure Physics Hybrid Data-Physics Pure Data

* Numerical Solvers (FEMs) e Hybrid Simulators (NCLaw) * Neural Operators / Neural

* Physics-Informed Neural Networks ¢ Physics-Informed Neural Operator Surrogates (DeepONet, Transolver)

/ Neural-FEMs (PINO) * General Deep Models

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422—-440 (2021)
7

Overview of Neural PDE Solvers

Small data Some data Big data
Data
Physics
Lots of physics Some physics No physics

Pure Physics ‘ Hybrid Data-Physics Pure Data

* Numerical Solvers (FEMs) e Hybrid Simulators (NCLaw) * Neural Operators / Neural

* Physics-Informed Neural Networks ¢ Physics-Informed Neural Operator Surrogates (DeepONet, Transolver)

/ Neural-FEMs (PINO) * General Deep Models

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422—-440 (2021)
7

Physics-Informed Neural Networks (PINNs)

B PDE (v)
ot
0 ou ou o’u i

K +Uu —y— !
ox ot ox ox? |
B i

o g

Enforcing outputs and gradients of deep

models to satisfy target equations

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422—-440 (2021)
8

Physics-Informed Neural Networks (PINNs)

k'.]

(u)(x®) =0, € Q; Z(u)(x) = 0,2 € Qoy; B(u)(x) =0,z € 012,

Convection

5024 =0
ot dx

Raissi, M. et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019): 686-707. 9

Physics-Informed Neural Networks (PINNs)

Fu)(x)=0,2€Q; Z(u)(x) =0,z € Qp; B(u)(x) =0,x € 09,

e 0o 0 0 o
Convection e ©6 0 0 ©
T T t sampling e o0 0 o
E+50a=0 e 0o 0 0 o
o o0 0 o

Raissi, M. et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019): 686-707. 9

Physics-Informed Neural Networks (PINNs)

)\Q)\Q b)\aﬂ &
L(ug) = No ||5’:(’UJ<9)(«"6z)||2 : Z |1 Z (ug) () || + Z 1B(uo) ()|
=1 1=1

Convection \\.
. PINN Loss on Finite
Sampling
gu 50(;_u =0 \ Collocation Points
t X
2 2
(Informal define) L = |52 + 50"’“9 + [lug (x, 0) — sin@)||* + |1ug (0, £) — ug (1,)|

Raissi, M. et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations, Journal of Computational Physics 378 (2019): 686-707. 9

Physics-Informed Neural Networks (PINNs)

Nq Naq

) > 1)@l + 23 () @)

No

)\QO

L(ug) = IIF(uo)(wz)IIZ

1=1

T
[

Convection
. PINN Loss on Finite
Sampling
ou SOa—u =0 Collocation Points
Gt ox

%

Extremely elegant formalization (autodifferential gradient, explicit constraint)

but still has some underlying issues to be solved
10

PINN Failure Modes

Convection Reaction-Diffusion

1.00

0.75

0.50

0.25

0.00

-0.25

—-0.50
-0.75
1.0 —-1.00

0.6 0.8 1.0

0.4 0.6 0.8 1.0 8.0 0.2 0.4 0.6 0.8 1.0

. : ; o ! : . 5
(b) Exact solution for 3 = 30 (¢) PINN solution for B = 30 (a) Exact solution for p =5, v =5 (b) PINN solution for p =5, v =25
ou ou ou 0%u
E—I_IB%:O? JIEQ,tG[O,T], E—V@—pU(l—’U,):O, xGQ,tE(O,T],
u(z,0) =h(z), =z €. u(z,0) = h(z), z€Q.

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurlPS 2021.
11

PINN Failure Modes

Reaction-Diffusion

Convection

1.00

0.75

0.50

0.25

0.00

-0.25

~0.50
~0.75 .
1o 100 i 7 . 0.6 0.8 1.0

0.4 0.6 0.8 1.0

0.4 0.6 0.8 1.0 BD 0.2

t ' t t t
(b) Exact solution for 3 = 30 (¢) PINN solution for B = 30 (a) Exact solution for p =5, v =5 (b) PINN solution for p =5, v =25
ou ou ou 0%u
o 785 =0, z€Q,t€0,T], E—V@—pu(l—u)zm zeQ,te (0,T],
u(z,0) = h(z), €. u(z,0) = h(z), =€

X
-

X

o}

o

%

OHEHENNWWA
UouLouowmo ©
=

Hard-to-Optimize

N W s o»

Loss Landscape

1.0—1.0

1.0—1.0

(c) B =.20.0 d) g _ 30.0 e) B _ 40.0

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurlPS 2021.
11

A Long-Standing Challenge in DL: Optimization

output
size: 224

output
size: 112

output
size: 56

output
size: 28

output
size: 14

output
size: 7

output
size: 1

VGG-19
image
[33cov6s |
[sconves |
pool, /2

3x3 conv, 128

34-layer plain

image

34-layer residual

image

[3x3conv,128 |

[7x7 conv, 64, /2

[7x7conv,68,2 |

v v
pool, /2 pool, /2 pool, /2
2 v
[3aconv,256 | 3x3 conv, 64 3x3conv,64 |
[33conv,256 | 3x3 conv, 64 33conv,64 |
L7 17 ¥
[33conv256 | 3x3 conv, 64 3x3conv,64 |
L7
[3x3conv,256 | 3x3 conv, 64 3x3conv,64 |
3x3 conv, 64 33conv, 64|
L7 v
3x3 conv, 64 3x3conv,64 |
pool, /2 33 conv, 128, /2 3o, 128,22 |
2 2 M
[3aconv512 | 3x3 conv, 128 33conv,128 | .~
L7 L7
[3acovs12 | 3x3 conv, 128 33conv, 128 |
2
[3aconys12 | 33 conv, 128 33conv, 128 |
[33conys12 | 3x3 conv, 128 33conv, 128 |
v
33 conv, 128 3x3conv, 128 |

[
[
[
[
[
[
[
[
[
[
[
[
L2
[3x3cony, 128
v
[
[
[
[
[
[
[
[
[
[
[
[
[

J
J
J
]
]
]
]
]
]
]
]
]
J
J
]
]
|
]
]
]
]
|
J
]
]
]

[

[

[

[

[

[

[

[

[

[

[

[

[3x3m:v,1®

L7

[33conv,128 |
[

[

[

[

[

[

[

[

[

[

[

[

3x3 conv, 128
Y.
pool, /2 3x3 conv, 256, /2 33conv, 256,/2_ | s,
¥ y
[3aconv,512 | 3x3 conv, 256 3x3 conv, 256 L
[3aconv512 | 3x3 conv, 256 3x3cony, 256 |
L7
[T3acony,512 | 33 cony, 256 33cony, 25 |
[33conv,512 | 3x3 conv, 256 33cony, 256 |
A7
3x3 conv, 256 3x3cony, 256 |
33 conv, 256 3x3conv, 256 |
17
3x3 conv, 256 3x3conv, 256 |
¥
33 cony, 256 33 conv, 256 |
v
3x3 conv, 256 33cony, 256 |
¥
33 conv, 256 3x3conv, 256 |
L2
3x3 conv, 256 3x3conv, 256 |
2 Y
pool, /2 3x3 conv, 512, /2 3x3 conv, 512,/2
Y
[33conv,52 | [3adconvs12 | .
[33convs12 | [3x3cony, 512
3x3 conv, 512 3x3 cony, 512
[3x3conv,512 | [3x3cony,512
L7
[33comvs12 | [3acony, 512
A
fc4096 avg pool avg pool
[fc 4096 | [fc 1000 | [fc 1000 |

Train loss

201 20
e
N
< e 56-layer
5 S

=

5 10° g Lo 20-layer
o0
K= 56-layer >
g 8
< ~—
& 20-layer

% I 2 ; : 5 6 % 1 2 ‘ | s 6

3 4 3 4
iter. (1le4) iter. (1e4)

A plain neural network cannot benefit from adding layers.
Cached During Inference

Output Hidden u,(OOQQ - ~ [ele)e)e)
f

—— Vanilla

—— Scaled Embed (

Multi-Head Attention

1

Loss Spike
[Sho, 2025] ’

apply
RoPE

OO ~ O] Latent C[Q

Latent cX”

SINEININ

T T T T T T T T
0 5000 10000 15000 20000 25000 30000 35000

Input Hidden h, [OOOO OOOO]

Train step

DeepSeek-V3

DeepSeek-V3: New architecture ensures stable training.

He, et al. Deep Residual Learning for Image Recognition. CVPR 2026.

DeepSeek-V3 Technical Report. 2025

-."{.ﬂ.'é'...&.‘o'

3* " NEURAL INFORMATION
"’gi. PROCESSING SYSTEMS
[

RoOPINN: Region Optimized
Physics-Informed Neural Networks

Haixu Wu, Huakun Luo, Yuezhou Ma, Jianmin Wang, Mingsheng Long™
School of Software, BNRist, Tsinghua University, China
{wuhx23,1luohk19,mayz20}@mails. tsinghua.edu.cn, {jimwang,mingsheng}@tsinghua.edu.cn

Haixu Wu Huakun Luo Yuezhou Ma Jianmin Wang Mingsheng Long

Paper Link: https://openreview.net/pdf?id=wZigMVFURk
Code Link: https://qgithub.com/thuml/RoPINN

https://openreview.net/pdf?id=wZigMVFURk
https://github.com/thuml/ProPINN

Rethinking the PINN Formalization

NQO

2 A 2
Z 1Z (o) ()] + NL;) > 1Bus) ()|

1=1 1=1

N,
Ao

Lluo) =5 |7 (ug) () " +

AQO

1. Point Optimization

ou 504 _
ot Ox 2.

Insufficient Enforcement of Physics Loss

» Train on limited collocation points but expect the model to generalize to the whole domain.

» Train with “first-order” loss but expect the model to satisfy the infinite-order constraint.

13

Direct Solution: High-order regularization

Fu)(x)=0,2€Q; Z(u)(x) =0,z € Qo; B(u)(x) =0,z € 09,

@ Differential function
Ny

D Flu)(x) =0 = L% 3

J 7],1;1

Akj

—.7: (ug)(x;)

v" Add the high-order constraints of PDEs as regularization terms to the loss function

X Calculating high-order derivatives can be extremely time-consuming and unstable

Yu, Jeremy et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems,
Computer Methods in Applied Mechanics and Engineering, 2022 14

Region Optimization V.S. Point Optimization

Typical Resampling High-order

Variational Ours
Loss Loss Loss Low-order Loss Loss
° ° ° @ ° ° ° = @ ® ®
° ° ° ® ® ° ° * ¢] ® 2 e @ @ @
° ® ° @ ® ° * * ° e & ® > @ @ ®
(a) Point Optimization High-order Loss || High-order Tests (b) Region Optimization
A NQ A NQO A N(')Q
Q 2 Qo 2 oN 2
: Lo i [_ F _ T : B :
Point Optimization: L£(ug) N, ;ll (uo) (i) ||” + No, ;Il (uo)(zi)||” + Nog ; [1B(uo) ()|
Region Optimization: Ereglon (ug,S) Z Ereglon (ug,) Z / (ug, x + £)dE€
" i8] 2 -

15

Theoretical Analysis
» Generalization Error in Expectation

Egen = |Es,a [L (vacs), Q) — L (uacs),S)] |

) : Input Domain Collocation Points
» Basic Assumption P

1£(uo,,) — L(ug,, ®)|| < L[|61 — b2l [|VoL(ug,,x) — VoL(ug,,)| < 5|61 — b2].

Theorem 3.3 (Point optimization). Suppose that the loss function L is L-Lipschitz-(3-smooth for 6.
If we run stochastic gradient method with step size o at the t-th step for T’ iterations, we have that:

(1) If L is convex for 0 and o; < %, then Egen < % Zle oy (proved by [13)152]).

(2) If L is bounded by a constant C for all 0, x and is non-convex for 6 with monotonically non-

increasing step sizes oy < é, then Egen < % + 2[;3(7‘,(;(__11)) (tighter bound than [13, 52)]).

16

Theoretical Analysis: Generalization Bound

Theorem 3.5 (Region optimization). Suppose that the point optimization loss function L is L-
Lipschitz and [3-smooth for 0. If we run stochastic gradient method with step size o for T iterations
based on region optimization loss L.°8'°" in Eq. (§), the generalization error in expectation satisfies:

(1) If L is convex for 0 and oy < %, then Egen < (1 — M)% 23;1 Q.

€2
_ . Linearly related to region size
(2) If L is bounded by a constant C for all 0, x and is non-convex for 6 with monotonically non-

; ; : 1 Cc | 2L*(T-1) 19, \2 : ;
increasing step sizes ay < g, then Egen < s1 T BaS=D T JL(o])%, where J is a finite number

that depends on the training property at the several beginning iieralions.

» Canonical Point Optimization: 0, = 0

Cannot benefit from introducing “region”

» Globally sampling points: (),. = ()

Equivalent to directly optimizing the loss defined on (2, generalization error will be reduced to zero.

Cannot be satisfied in practice, which requires the precise calculation of the integral of ()

17

Practical Algorithm

Algorithm 1 Region Optimized PINN (RoPINN)

Input: number of iterations 7', number of past iterations 7 retained to estimate the trust region,
default region size r, initial PINN parameters 6y and trust region calibration value o9 = 1.
Output: optimized PINN parameters 07.
Initialize an empty buffer to record gradients as g.
fort =0to 7 do

/I Region Optimization with Monte Carlo Approximation @ Monte Carlo Approximation

Sample points from neighborhood regions: S’ = {x; + §Z-}Li|1, x; €S,§, ~ U|0, ULt](d“)
Calculate loss function £; = L (ug,,S’)
Update 6; to 6; 1 with optimizer (Adam [20], L-BFGS [23]], etc) to minimize loss function L,
// Trust Region Calibration @) Trust Region Calibration
Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements
Trust region calibration with o311 = ||o(g)]|

end for

Part 1: Monte Carlo approximation

fort =0to 1 do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: &’ = {x; + £i},|b-i|1, x; €S,€; ~U|0, U%](dH)

Calculate loss function £; = L (ug,,S’) Sampling within a region
Update 6, to 6,1 with optimizer (Adam [20], L-BFGS [23]], etc) to minimize loss function L,

» Approximate the region optimization gradient by Monte Carlo approximation

Eenva,) [VoL(ug, T + €)] = Vo L5 (ug, x)

Xt
x + Qp,
Xt+1 see

Training Iterations

\ 4

19

Part 1: Monte Carlo approximation

fort =0to 1 do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: &’ = {x; + £i},|ii|1, x; €S,€; ~U|0, ULt](dH)

Calculate loss function £; = L (ug,,S’) sampling within a region
Update 6, to 6; 1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss function L

» Approximate the region optimization gradient by Monte Carlo approximation

Eevva,) [VoL(ug, @ + &€)] = Vo L;#" (ug,)

» This sampling-based design is also equivalent to a high-order loss function

Eeva,) (VoL(ug, + €)) = Eeova,) (VGE(UO,) + Vo(£" L1(ug, x)) + O(anz))

Important Note: This design is tailored to PINN loss,

where we can precisely calculate the loss at any sampled point.

19

Part 1: Monte Carlo approximation

fort =0to 1 do
/I Region Optimization with Monte Carlo Approximation

Sample points from neighborhood regions: &’ = {x; + £i},|b-i|1, x; €S,€; ~U|0, U%](dH)

Calculate loss function £; = L (ug,,S’)
Update 6, to 6,1 with optimizer (Adam [20], L-BFGS [23]], etc) to minimize loss function L,

» Approximate the region optimization gradient by Monte Carlo approximation

Eenva,) [VoL(ug, T + €)] = Vo L5 (ug, x)

Theorem 3.8 (Convergence rate). Suppose that there exists a constant H, s.t. Vv and Vx € (Q,
(0T Vo L8100 (ug,)v| < H||v||% If the step size oy = \/t1+—1 decreases over time for T iterations,

the region optimization based on Monte Carlo approximation will converge at the speed of

E [Ivocrn(u, o)) < 0 (=) -

20

Part 2: Trust Region Calibration

Theorem 3.9 (Gradient estimation error). The estimation error of gradient descent between Monte
Carlo approximation and the original region optimization satisfies:

]E&NU(QT) [”V@E(Ua, @ -+ €) — Vgﬁiegion(’lm, a:)||2] * = ||O'£NU(QT) (Veﬁ(%g, T + ﬁ))” y (11)

where o represents the standard deviation of gradients in region §1,.. \

y

VoL Gradient variance within a region.

Region x + (),

21

Part 2: Trust Region Calibration

Theorem 3.9 (Gradient estimation error). The estimation error of gradient descent between Monte
Carlo approximation and the original region optimization satisfies:

]E&NU(QT) [”V@E(U@, @ -+ 5) — Vgﬁiegion(’lm, m)||2] * = ||O'£NU(QT) (Veﬁ(’u,g, T + 5))” y (11)

where o represents the standard deviation of gradients in region §1,.. \

y

VoL Gradient variance within a region.

Region x + (),

2
Recall Generalization error: Egen, < (1 — %)% Zle o

» A larger region size r: better generalization but will bring larger gradient estimation error.

21

Part 2: Trust Region Calibration

fort =0to 7' do

/I Region Optimization with Monte Carlo Approximation
S|

Sample points from neighborhood regions: &’ = {x; + £,}.2,x; € S, €, ~ U|0 Lt](dﬂ)

Calculate loss function £; = L (ug,,S’)

Update 6; to 0,1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss/Afunction L;

/] Trust Region Calibration
Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements
Trust region calibration with o311 = ||o(g)]|

end for

1

Adjust region size according to the gradient variance

T X

among successive iterations. Region size HJENU(QT) (VoL (ug, x +§)) H

v’ Similar ideas are widely used in deep learning optimizers, such as Adam and AdaGrad, which adopt

multi-iteration statistics as the momentum of gradient descent.

22

Part 2: Trust Region Calibration

(2)
(1) \ f \ Gradient Variance
Retrieve N N D ——
Computation Pzt //’Z’ =l ves I
SEEIS CEE8Y 15
Graph §\\4Wv §\\W? N
Vv R ‘Ll Naeoed Nasiend
PO Vi i
Xt (3)
x + Qrt sse Trust Region
Xt+1 Calibration

v

Training Iterations
v The gradient of each iteration can be effectively obtained by retrieving the computation graph.

RoPINN has no extra gradient or backpropagation calculation w.r.t. point optimization.

Part 2: Trust Region Calibration

fort =0to 7T do
/I Region Optimization with Monte Carlo Approximation
Sample points from neighborhood regions: S’ = {x; + &z‘}l;ill, x; € S,& ~U|0, GLt](d“)
Calculate loss function £; = L (ug,,S’) —
Update 6; to 0,1 with optimizer (Adam [20], L-BFGS [23], etc) to minimize loss function £;
/] Trust Region Calibration
Record the gradient of parameters g; throughout optimization
Update gradient buffer g by adding g; and keeping the latest Ty elements
Trust region calibration with o311 = ||o(g)]|

end for

Theorem 3.11 (Trust region multi-iteration approximation). Suppose that loss function L is

L-Lipschitz and 3-smooth for 0 and the learning rate oy < BLL converges to zero over time t, then the

estimation error can be approximated by the variance of optimization gradients in multiple successive
iterations. Given hyperparameter 1, our multi-iteration approximation is guaranteed by

To

lim o ({vgc(u&_m, zi)}izl) —0 ({vgc(u(;t, z,,;)};”;l) . (14)

t— o0

23

Theoretical Analysis

Theorem 3.12 (Region Optimization with gradient estimation error). Based on the same as-
sumption in Theorem [3.5| but optimize the model with the approximated region optimization loss
L2PProX(yg) = VoL(ug,x + &),& ~ U(SQ,.) for T iterations, we further denote the upper bound
of gradient estimation error as £, graq = maxy< |V LEPPTOX — Vo LI810|| | then Eyey satisfies:

(1) If L is convex for 6 and o, < 2 Egen = ((1—|Q:|/|2)L + S)|S| Zt | Ot

inversely proportional to || generally o< |2y |

(1) Benefit from region olr;t (2) Gradient approximation error
(2) If L is bounded by a constant C' and is non-convex for 6 with monotonically non-increasing

LD
step sizes oy < ﬁt, then Egen < - Sl 5(|é|_1)) ~J'L(Q|/I2)? + JErgraa(l+]Q:]/19)),
inversely proportional to || generally o< |€2,.|
where J' is a finite number that depends on the training property at the several beginning iterations.

Generalization « || Optimization < —|Q,|

» Canonical point optimization (£, = 0) and globally sampling points (Q2,, = Q) are fixed special cases.

RoPINN can adaptively balance optimization and generalization during training.

24

Intuitive Understanding

Point optimization: calculate gradient on the

fixed collocation point in all iterations

Ta, A

6 £(u‘9t”1’) —OCt+1V9L(u6t+1’X) > ..
‘ 02

Or41

25

Intuitive Understanding

x +Q,,

9]

Point optimization: calculate gradient on the

fixed collocation point in all iterations

Ta, A

6 £(u‘9t'*) —OCt+1V9[’(u6t+1,X) > ...
‘ 0t+2

Ot11

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations

Ot+1

26

Intuitive Understanding

Point optimization: calculate gradient on the

X+ Q, fixed collocation point in all iterations

Ta, A

6 £(u‘9t'*) —OCt+1V9[’(u6t+1,X) > ...
‘ 0t+2

Ot11
Q

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations

.1,
z) _at+1V6L(u9t+1;xt+1)

>
6t+1 0t+2

Intuitive Understanding

x +Q,,

9]

Point optimization: calculate gradient on the

fixed collocation point in all iterations

Ta, A

6 £(u‘9t'*) —(Xt+1V9[’(u6t+1,X) > ...
‘ 0t+2

Ot+1

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations

26

Intuitive Understanding

x +Q,,

9]

Point optimization: calculate gradient on the

fixed collocation point in all iterations

Ta, A

6 £(u‘9t'*) —(Xt+1V9[’(u6t+1,X) > ...
‘ 0t+2

Ot+1

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations

26

Experiments

. . . Table 4: Details of datasets in PINNacle [12] (16 different PDEs included in our experiments),
Table 1 y Summary Of benChmarkS' Dimension means the including the dimension of inputs, highest order of PDEs, number of train/test points and concrete

1 1 1 1 1 1 1 equations. Here we only present the simplified PDE formalizations for intuitive understanding. More
lnput Space and Derivative is the hlghCSt derivative order. detailed descriptions of PDE type and coefficient meanings can be found in their paper [12].

. . . PDE Dimension Order Ngwn N K t
Benchmark Dimension Derivative Property TR T e =7 quations
Buges 14C | ID+Time 2 16384 12288 P
. . . 2d-C | 2D+Time 2 98308 82690 o =
1D-Reaction 1D+Time 1 (e.g. &%) Failure modes [24]
. % 24-C 2D 2 12288 10240 —~Au=0
1D-Wave ID+Time 2 (e.g. g—m’;) / Poisson 24-CG | 2D 2 12288 10240 —Au+ ku = f(@,)

- . N . 3d-CG 3D 2 49152 40960 —piAu+ kiu= f(z,y,2),i = 1,2
Convection ID+Time 1 (e.g. 5%) i Failure modes [24] sams | 2D 5 10288 10329 —V(a(z)Ve) = f(z,5)
PINNacle [12] | ID~5D+Time 1~2 (e.g. g—m%) 16 different tasks 2d-VC | 2D+Time 2 65536 49189 ou _ Y (a(z)Vu) = f(z,t)

Heat 2d-MS | 2D+Time 2 65536 49189 5t — GoomyrUse — Zryy =0
2d-CG | 2D+Time 2 65536 49152 e —Au=0
10 - 10 — (% 24-C 2D 2 14337 12378 § oA B
08 § g NS 24 2D 2 14055 12007 VUt VP-pAu=0,V-u=0
05 \ Z: Wave 14-C | 1D+Time 2 12288 10329 Utr — Atgy =0
06 oo \ von 2d.-CG | 2D+Time 2 49170 42194 [V2 — 3%25] u(z,t) =0
0.4 \ -0.25 = — — uwv?
s . Chaoic Gs | DeTme 2 ess36 om0 W eAuib(low) - uv
0.2 \ vy = e2Av — dv + uv
-0.75
- o —— High- PNd 5D 2 49152 67241 —Au="T"3" sin(Tz;)
(a) 1D-Reaction (b) 1D-Wave (c) Convection dim HNd | 5D+Time 2 65537 49152 9% — kAu+ f(x,1)

> Five base models: PINN, FLS, QRes, PINNsFormer, KAN

» 19 different PDE solving tasks: 1D-Reaction, 1D-Wave, Convection and PINNacle

Main Results

1D-Reaction 1D-Wave Convection PINNacle (16 tasks)
Loss rMAE rMSE Loss rMAE rMSE Loss rMAE rMSE rMAE rMSE

Base Model Objective

Vanilla 2.0e-1 0.982 0.981 1.9e-2 0.326 0.335 1.6e-2 0.778 0.840 - -
gPINN 2.0c-1 0.978 0978 2.8¢-2 0.399 0.399 3.1e2 0.890 0.935 188% 188% > Two typical baselines:
PINN[36] VPINN 23e-1 0.985 0.982 7.3¢-3 0.162 0.173 1.1e2 0.663 0.743 250% 25.0%

RoPINN 4.7e-5 0.056 0.095 1.5e-3 0.063 0.064 1.0e-2 0.635 0.720 - ot

Promotion 99% 94% 90% 92% 80% 80% 25% 18% 14% °>>o% 1000% gPINN (high-order regularization)
Vanilla 2.0e-1 0.979 0.977 9.8¢-2 0.523 0.515 4.2e-2 0.925 0.959 - . . L.
gPINN 2.1e-2 0.984 0.984 1.3e-1 0.785 0.781 1.6e-1 1.111 1.222 125% 12.5% VPINN (variational formalization)

QRes [3] VPINN 2.2e-2 0.999 1.000 1.0e-1 0.709 0.721 5.5e-2 0.941 0.966 12.5% 12.5%

RoPINN 9.0e-6 0.007 0.013 1.7e¢-2 0.309 0.321 1.2¢-2 0.819 0.870 81.3% 81.3%
Promotion 99% 99% 99% 83% 41% 38% 71% 11% 9% =7 =7

Vanilla 2.0e-1 0.984 0.985 3.6e-3 0.102 0.119 1.2¢-2 0.674 0.771 -]
gPINN 2.0e-1 0.978 0.979 9.2¢-2 0.500 0.489 3.8e-1 0.913 0.949 125% 18.8%
FLS[50] vPINN 2.le-1 1.000 0.994 2.1e-3 0.069 0.069 1.1e-2 0.688 0.765 25.0% 18.8%
ROPINN 2.2e-5 0.022 0.039 15e-4 0.016 0.017 9.6e-4 0.173 0.197 ¢ 10 o o PINN base models in all 19 PDEs.
Promotion 99% 98% 96% 96% 84% 86% 99% 74% 74% ° =°° e

v RoPINN consistently boost all five

Vanilla 3.0e-6 0.015 0.030 1.4e-2 0.270 0.283 3.7e-5 0.023 0.027 - -
PINNGs- gPINN 1.5e-6 0.009 0.018 OOM OOM OOM 3.7e-2 0.914 0.950 0.0% 0.0%
Former [58] VvPINN 1.6e-4 0.065 0.124 4.5e-2 0.411 0.400 5.1e-5 0.016 0.022 0.0% 0.0%

RoPINN 1.0e-6 0.007 0.017 6.5¢-3 0.165 0.172 1.2e-5 0.005 0.006
Promotion 66% 53% 43% 54% 39% 39% 68% T78% 78%

v RoPINN helps mitigate the “PINN

100.0% 100%

Vanilla 7.3e-5 0.031 0.061 9.2e-2 0.499 0.489 5.8¢-2 0.922 0.954 failure modes” (see results of 1D-

gPINN 2.9e-4 0.030 0.061 2.6e-1 1.131 1.110 1.2e-1 1.006 1.041 31.3% 31.3%
KAN [28] VvPINN 2.1e-1 0.998 0.996 9.0e-2 0.498 0.487 2.5e-2 0.853 0.853 43.8% 43.8%

RoPINN 4.9e¢-5 0.026 0.051 9.6e-3 0.177 0.191 2.2e-2 0.805 0.801
Promotion 33% 16% 16% 89% 65% 61% 62% 13% 16%

Reaction and Convection).

100% 93.8%

Algorithm Analysis: Region Size

H H r . . .
(a) Trust Region Size log(;t) (b) Training Loss £ in Eq. (2) (c) rMSE
1.0 &
-3.0 1 \//\/—\/——\/_/—\ 020 e T
~ 0.8
4.0 0.15
=~ w/0 RoPINN 0.6 - = w/o RoPINN
—4.51 —— |nital Size r=1e-6 ’ —— Inital Size r=1e-6
- |nital Size r=1e-5 - |nital Size r=1e-5
—504 0.10 e oer= panszer=
- |nital Size r=1e-4 — |nital Size r=1e-4
= |nital Size r=1e-3 0.4 1 - |nital Size r=1e-3
-5.5 1
0.05
—6.0 1 —— |nital Size r=1e-6 0.2 -
- |nital Size r=1e-5
—6.51 — Inital Size r=1e-4 L
— Inital Size r=1e-3 0.00 4 L s
_70 1 T T T T T T L § T T T T T 0'0 B T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training Iterations Training Iterations Training Iterations

Figure 2: Optimization of canonical PINN [36] on the 1D-Reaction under different region sizes.

v Adaptively find the “balance point”: Even though we initialize the region size as distinct values, RoPINN
will progressively adjust the trust region size to similar values during training.
v’ Affect convergence: If r is initialized as a value closer to the balance point, the training will converge

faster. Too large a region size will decrease the convergence speed due to the optimization noise.

Algorithm Analysis: Sampling Points

s P r . e .
(a) Trust Region Size log(;) (b) Training Loss £ in Eq. (2) (c) rMSE
t
- Sample 1 Point \ 1.0
2.5 — Sam i 0.20 1
-2. ple 3 Points)
- Sample 5 Points
0.8
=3.0 A1 0.15
=~ w/0o RoPINN 0.6 1 ~w/o ROPINN

} - Sample 1 Point - Sample 1 Point

-35 0.10 A - Sample 3 Points - Sample 3 Points
- Sample 5 Points 041 - Sample 5 Points
_40 o
0.05 A
0.2 A
—4.5 1 L \ —_—
0.00 A ™~
0 200 400 600 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
Training Iterations Training Iterations Training Iterations

Figure 3: Optimization of canonical PINN [36] on the 1D-Reaction under different sample points.

Sampling more points in each region will bring a lower gradient estimation error,

which will lead to larger region size, better convergence and final performance.

30

Algorithm Analysis: Loss Landscape

Convection Error Map Loss Landscape Error Map Loss Landscape
1.00 1.00 1.00

0.75 0.75 * 0.75
1750
0.50 0.50 1500 0.50 ik
1250 4 4000
0.25 \ 0.25 1000 0.25 3000

750 2000

\—
\‘
\‘
—

\ - —— .

-0.25 \ 025 .\; o "

—0.50 \ =R 2 Ho \ e s
-0.75 \ -0.75 _10 o \ S0 I i

au au o Ho0 Elgen":i‘?orlo's 10 ~LO <& 20 E’ge"":ctoouo's 10 ~LO <

3t F°05;=0 (a) Vanilla PINN (b) PINN+RoPINN

Figure 6: Loss landscape of RoOPINN and vanilla PINNs on the Convection equation. Error Map
refers to the distance between model prediction and the accurate solution, i.e. (ug — u).

“PINN failure modes” are not caused by limited model capacity but by a hard-to-optimize loss landscape.

Empowered by RoPINN, the loss landscape of PINN is significantly smoothed.

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks. NeurlPS 2021.

31

More Showcases

1D-Wave 1D-Reaction

Convection

).

Ground Truth

1.0
0.8
0.6
0.4
0.2

0.0

- -1.0

o e
n =)

1.00
0.75
0.50
0.25
0.00
-0.25
-0.50
-0.75
-1.00

PINN Error

|

0.15

0.10

0.05

0.00

-0.0

-0.1

0.3

-0.2

-0.3
1.00
0.75
0.50
0.25
0.00
-0.2
-0.5
-0.7

-1.00

GNN+ROPINN Error \

0.15
0.10
0.05

0.00

-0.05
. _0'10
-0.15

-0.2

-0.3
1.00
0.75
0.50
0.25
0.00
-0.25

-0.50

—_————
N —0175

S

PINNsFormer Error

IﬁsFormeHRoPlNN Erh

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.3
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15
-0.20

o

0.15

0.10

0.05

0.00

-0.05

-0.10

-0.3
0.20
0.15
0.10
0.05
0.00
-0.05
-0.10
-0.15

=/

Figure 9: Showcases of ROPINN on the first three datasets based on PINN and PINNsFormer.

32

An Insight from the Proof Process

y
X
Q
Better correlation
Q

Q, 2 T
Egen < (1 — ||Q||)2|§| D1 Ot

Proof Sketch (The Importance of Gradient Correlation)
(1) Egen can be bounded by a term relating to the

expectation of distance between parameter 6 optimized
from different training sets.

(2) Region optimization paradigm brings a more “consistent

gradient direction than point optimization at each iteration.

What will happen if different collocation points have irrelevant gradients?

33

-."{.w.'é;.&.‘o'

3* " NEURAL INFORMATION
"'gi. PROCESSING SYSTEMS
[

ProPINN: Demystifying Propagation Failures in
Physics-Informed Neural Networks

Haixu Wu, Yuezhou Ma, Hang Zhou, Huikun Weng, Jianmin Wang, Mingsheng Long™
School of Software, BNRist, Tsinghua University, China
{wuhaixu98}@gmail . com, {mayz20,zhou-h23,wenghk22}@mails.tsinghua.edu.cn
{jimwang,mingsheng}@tsinghua.edu.cn

Haixu Wu Yuezhou Ma Jianmin Wang Mingsheng Long

Paper Link: https://arxiv.org/pdf/2502.00803
Code Link: https://qgithub.com/thuml|/ProPINN

https://arxiv.org/pdf/2502.00803
https://github.com/thuml/ProPINN

Peculiar Phenomena in PINN Optimization

Exact Solution Predicted Solution PDE Residuals
(8 = 50) O (8 = 50) (B=50)

6 | ' ~ 6 I 6 y - 10
0.5 -0.5

4 4 4 - 101
-0.0 -0.0

? '0.5 . Trivial I0,5 2 10

Solution
0 L _19 ol o 103
0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0
{ (5 7

PINN loss values (PDE residuals) are very close to zero,

but the prediction error is still quite large.

Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023
34

Peculiar Phenomena in PINN Optimization

Exact Solution Predicted Solution PDE Residuals
(8 = 50) O (8 = 50) (B=50)

6 | ' 3 6 I 6 ’ ._10l
0.9 -0.5

4 4 4 - 101
-0.0 -0.0

? Io.s ’ Trivial Io,5 2 v

Solution
0 'R _j00k o O 10
0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0

t t t

Only IC and BC have the correct supervision of solution values.

Propagation hypothesis: “In order for PINNs to avoid converging to trivial solutions at interior points,

the correct solution must be propagated from the initial/boundary points to the interior points.”

Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023
34

Why Propagation Failure Happens?

Exact Solution Predicted Solution PDE Residuals
(8 = 50) . (8 = 50) (8 = 50) .3

6 | ' ~ 6 I 6 y 10
0.5 -0.5

4 4 4 - 101
-0.0 -0.0

? '0.5 ’ Trivial Io,5 2 v

Solution
0 L _19 ol o 103
0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0
{ (5 7

Explanation from Daw et al.:

Some collocation points start converging to trivial solutions before the correct solution from

initial/boundary points is able to reach them.

Daw, A. et al. Mitigating Propagation Failures in Physics-informed Neural Networks using Retain-Resample-Release (R3) Sampling, ICML 2023
35

Why Propagation Failure Happens?

Exact Solution Predicted Solution PDE Residuals
(8 = 50) O (8 = 50) (B=50)

6 | ' Y6 6 | - 10
0.9 -0.5

4 4 4 - 101
-0.0 -0.0

? Io.s : Trivial I0,5 2 10

Solution
0 'R0k o O 10
0.0 05 1.0 0.0 0.5 1.0 0.0 0.5 1.0
{ (5 7

A comparison between PINNs and FEMs:

» Start from a trivial estimation and the interior areas hold incorrect output supervision in the beginning

» PINNs suffer from propagation failure, but FEMs do not.

PINNSs v.s. FEMs

(a) Finite Element Methods (b) Physics-Informed Neural Networks

I
; : I
Basis Function y; Basis Function y; The k-th Step Update : T _ The k-th Step Update
ugk) u§k+1) : ‘\W/,\\/////——\\\d”/// \7 gt (Xu) Hgth+) (X1)
_— o (X:) o Ug (X;) |
i udd | - ' /,] 7 U (X;) (Uges) (X;)
/ : N/)e(kﬂ)(
k 3 o,
2 u}g) uj(e | e Ug(k) (xj) ue(k+1)(xj)
ses e I e .88 “ee
Node x; iy g : Point x; Uy (Xn) Ug(k+1) (Xn)

Node x;

Explicit Implicit

PINNSs v.s. FEMs

(a) Finite Element Methods
Basis Function y; Basis Function y; The k-th Step Update

(b) Physics-Informed Neural Networks
The k-th Step Update

Neural Network ug

I
I
I
I
ul® ulD : Ugaio (X1) Ugiiern) (X1)
/,f ufk) ul.(kH) | Ug(r) (X;) Ug(krn) (X;)
/ / : }e(kﬂ)‘
/ k L (k+1
/Q / u]g) u} b gk (X)) Ug(rr) (X))
“ee e I .88 “es
(k) (k+1) | — ;
Node x; Up Up I Polrit; Point x; Ug(k) (Xn) Ug+1) (Xp)

Node x;

Theorem 3.1 (Propagation in FEMs). [10] Suppose that FEMs discretize () into computation
meshes with n nodes {x;}?_, and approximate the PDE solution by optimizing coefficients of basis
functions {¥;}_,, which are defined as region linear interpolation. Denote the coefficient of basis
function V; as u;, which is also the solution value of the i-th node. With the Jacobi iterative method
for solution value update, the interaction among solution values {u;}}_ at the k-th step is:

(kt1) _ 1 D(Y;, 9;)u® 3
u; DT, ¥) (-2 D(y;, 3)

i#J Active propagation
where {b;}"_, are constants related to external force. D(-,-) is a variational version of PDE

equation F (-), which presents non-zero values only for overlapped basis functions.

38

Understanding “Propagation”

(a) Finite Element Methods (b) Physics-Informed Neural Networks

|
|
; ; Basis Function {; - .
Basis Function ; v The k-th Step Update : Neural Network 1 The k-th Step Update
ugk) uikﬂ) : Ug (k) (x1) Ug(k+1) (x1)
uf") ul.(" +1) : / Ugaio (X;) Ug+) (X;)
| }0(,”,1)(.
Q u](k) S A uj(k+1) | Q ug(k)(xj) ue(kn)(xj)
ses aes I ses e
k k :
Node x; Node x; u1(1 ’ ufl 1 : Point x; Ug (k) (Xn) Ug(k+1) (Xn)
k41 1 k
u Y = —> " D(T;,))u 3)
D(¥,;, ;)
17

Stiffness matrix: Force on the j-th node to make region balance when the i-th node has a unit displacement.

Unit displacement . . o
What does the “stiffness matrix” look like in PINNs?

39

Understanding “Propagation”

(a) Finite Element Methods (b) Physics-Informed Neural Networks

I
I
; i _ Basis Function s; ¥ -
Basis Function y;) v The k-th Step Update : NBTRI NN The k-th Step Update
i}
Y; u® w0 : U (X1) Ug(k+1) (Xy)
u® u® / Ug(r) (X;) Ug(krn) (X;)
/ / L L : }0(k+1)(
| \
Q / u}k) —> uf“l) | Ug() (X;) 7 memm— = 1Y 1) (X))
“ee e I .88 “es
k) (k+1)
N&ds 5 Node X; Uy, Uy : Ug (k) (Xn) MOdEI ue(km(xn)

Parameter

Definition 3.4 (Propagation failure in PINN). In spirit of the physics meaning of Eq. (3), we define
the “stiffness” coefficient between x and x' for PINN ug as the “slope” w.r.t. the parameter change:

uo(x') = ty_yom) () (4)

Dpiwn(x,x') = }1\13% X

which measures the impact on model output at X' after updating PINN with a unit step at x. This
formula is analogous to applying a unit force at x and observing a displacement at x'. If x and
x' are adjacent and Dpyyy(x,X') is less than an empirically defined threshold e, we consider that
propagation failure has occurred between x and x'.

Y

The effect on x’ when we make an optimization step based on gradient at x.
40

Lower Gradient Correlation

AN /
uo(X) =ty g ()

Dpmn(x,x') = Lim Y

4

Lower D-PINN, weak propagation.

Neural Network ug The k-th Step Update

K/ G /// ue(k)(xl) ug(k+1)(x1)

/ r——

/ o -

g ue(xy)

. Ugo (X;) [Ug(k+1) (X;)

- 9 +1)
*g\, s Ug k) (xj) Ug(k+1) (Xj)
L Point x; Uy k) (X Ugk+1) (X

Point x; J o (Xn) Can be gtk (Xn)

“blocked” here

41

Lower Gradient Correlation

4

AN /
uo(X) =ty g ()

Dppn(x,x") = ;12%) ;

Lower D-PINN, weak propagation.

Theorem 3.6 (Gradient correlation). Given a PINN ugy and adjacent points x,x’ € (), the necessary

6’&9

Y

00

G'u,g (X, X’) _ |'< 8u0

>H ®

and sufficient condition of propagation failure between x and X' is a small gradient correlation,
which is formally defined as follows

A lower gradient correlation will cause non-active propagation.

Also answers why PINNs cannot benefit from large models:

A larger parameter space is more likely to cause orthogonal gradients.

41

Lower Gradient Correlation

X Error Map Residual Loss Gradient Correlation
———— T 1.0 1.0 X107 e [T 1.0
S —— l1.25 ————————
g \ 05 05 o0 ——— .R—_—. F0.8
= ‘ ~|tos
8 ¢ \ 0.0 L 0.0 - 0.75
(a) Ground Truth (b) Vanilla PINN Prediction Analysis
Error Map Residual Loss Gradient Correlation
0.15 1.0
_E X oiso G o 0.8
© iBE 0.05 . ~ e
CCJ o -0.05 0.02 \k 0.4
< o 010 oo 02
-1.00 -0.15 0.00 0.0

(a) Ground Truth (b) Vanilla PINN Prediction Analysis

ProPINN with Active Propagation

(a) Forward Perspective

(b) Backward Perspective

I
Differential Perturbation Shared Projection Multi-Region Mixing Feedforward : PINN 9P 0%
| X Point () | M0 o, 90,
l/ v x+8' 7 Region 1 L > I x > Zpoint —> ugp(x)
: | o : : Region | | Zpoint : ProPINN
: 09° : Poolin O
X + 851 - L5271 > ’ 41 | 0P| 1 & 0P o
I regio > ug(X) | 0.1 Tk ZLudell 905,
: x+ 8% 7 Region2 |— > 4 | 695"} fey £4 00y x+6% Hlz
: : I 00 60 0° : : Pngllizg ¥ z1?9gi°n : X z;;oint z > ug (%)
| X+ 5’;2 - o || > | Zregion
L______/____] \\ | zr%egion
Diff-A 61 k #scale - iy kr
iI-Aug(x) = ¢ x X s — 1 ’ — o
g(x) ,{{ + 9, 1_1}7:1 : Zyegion — L0OOlING ({zregion}i_l) ,7=1,--- ,#scale
Zooint = P (X) {Z”. }kr — {P(x + 4§)}k’" - M) #scale
point) region f ., r/Ji=1 7Z — Zpomt; Zregion? Uty Zregion ,

Ensure an explicit interaction among multiple collocation points within a region.
Transformer-based models, such as PINNsFormer or SetPINN, can also enable this, but are less efficient.

43

ProPINN with Active Propagation

(a) Forward Perspective (b) Backward Perspective

I
Differential Perturbation Shared Projection Multi-Region Mixing Feedforward : PINN 3P 7
e
| Point l . | 96 PY’)
| o] P() i M() f]'[() | Plx Hlg
| . [S | X ———— Zpoint—> up(X)
; Region || Zpoint 44: : ProPINN
Pooling ° X k1
X 4 1 \.\F,‘jgk | 0P 1 0P 0H
Zregio D o Pus® | 3| Y2500 Y
Region 20) A‘\\\‘. | ... : >
| Pooling | Zregion \ O | X $ E Zgomt % z ug(x)
~ region
I 5 g
| zregion

region

given k perturbations {8;}F_, with ||8;|| < % and defining uj
then ¥x,x' € Q, if |x — x| < &, we have G, (x,x') < Gureegion (x,x").

Theorem 3.8 (Gradient correlation improvement). Under Assumption [3.7|with region size R,

(x) = up(x) + P

Z?I;C:l Ug (x+51)

Larger gradient correlation, better propagation.

44

Visualization Comparison

Error Map Residual Loss Gradient Correlation Error Map Residual Loss Gradient Correlation
; 0.15 - 1.0 0.15 = x10™
0.5
c
o : 0.10 04 08 0.10 -
° 0.05 0.05
8 . 0.3 0.6
ot 0.0 0.0 15
ot ' -0.05 0.2 O -0.05
(a] 1.0
- : -0.10 0.1 02 -0.10
-0.156 0.0 0.0 - - -0.15 0.5
Error Map Residual Loss Gradient Correlation Error Map Residual Loss Gradient Correlation
-2 -3
x10 1.0 = x10
0.3 0.8 0.3
is / .)
N N
0.1
0.1 - 0.2
0.0 0.0 0.0
Residual Loss Gradient Correlation Error Map Residual Loss Gradient Correlation
0.15 1.0 0.15 0.0175
E x 0.10 i 08 0.10 0.0150
[y} ! 0.05 ~ B 0:04 0.05 0.0125
Q) -0.05 0.02 \ 0.4 ‘ -0.05 o007
— i 0.0050
< ~075 -0.10 0.01 0.2 -0.10 0.0025
-1.00 -0.15 0.00 0.0 -0.15 0.0000

(a) Ground Truth

(b) Vanilla PINN Prediction Analysis

(c) ProPINN (Ours) Prediction Analysis

Vanilla PINN

ProPINN

45

Training Dynamics

Training
Loss

Test
Loss

0.05

0.04

0.03

0.02

0.01

0.00

0.75

0.50

0.25

0.00

(@) Convection

= ProPINN
— PINN
200 400 600 800 1000
Iterations
- ProPINN
— PINN
200 400 600 800 1000
Iterations

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

1.0

0.8

0.6

0.4

0.2

0.0

(b) 1D-Reaction

(c) Allen-Cahn

- ProPINN
0.4 —— PINN
0.3
- ProPINN
— PINN 0.2
0.1
0.0
0 200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations
N 1.2
—— ProPINN
1.0 — PINN
0.8
—— ProPINN
— PINN 0.6
0.4
0.2
200 400 600 800 1000 200 400 600 800 1000
Iterations Iterations

0.0200

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

1.0

0.8

0.6

0.4

0.2

0.0

(d) 1D-Wave
— ProPINN
— PINN
0 200 400 600 800 1000
Iterations
—— ProPINN
— PINN
0 200 400 600 800 1000
Iterations

46

Complex Dynamics

Complex time-dependent

2D fluid dynamics

(a) Karman Vortex (b) Fluid Dynamics

rRMSE = 0.2172 (21% error reduction) rRMSE = 0.2765 (Second Best)

Y

L5 2.0 . A
\ \) ~ ‘ -

| \
0) |

: N - : (.(r N\
. : : = sl \U

Fﬁ.\
Ground Truth ProPINN Prediction ProPINN Error FLS Prediction FLS Error

Scaling Performance

e

8’LL9
00

B

A larger parameter space is more likely to cause orthogonal gradients.

0.0351 —e— Convection 1.04 P
—e— 1D-Reaction -
—— Allen-Cahn 0.91 M
0.030
—— 1D-Wave
0.8+ /
00231 Lower —— Convection
L L 074 —— 1D-Reaction
S oox) error < Larger —— Allen-Cahn
= = 0.6 —e— 1D-Wave
error
0.0151
\ 0.51
0.0101
0.4
0.005 03] —
Original +2 Layer +4 Layer +6 aner Orlglnal +2 Layer +4 Layer +6 Layer
(@) ProPINN (b) Vanilla PINN

ProPINN releases the scaling capability of the neural network. Larger model, better performance.

Physics-Informed Neural Networks (PINNs)

Nq Naq

) > 1)@l + 23 () @)

No

)\QO

L(ug) = IIF(uo)(wz)IIZ

1=1

T
[

Convection
. PINN Loss on Finite
Sampling
ou SOa—u =0 Collocation Points
Gt ox

%

Extremely elegant formalization (autodifferential gradient, explicit constraint)

but still has some underlying issues to be solved
49

Open Question: Unlock the Deep Learning Capability

7 4.2
6 —— L=(D/5.4-1013)70:095 | 5.6 —— L=(N/8.8-1013)70076
3.9
4.8
=0 4.0
9 4
"g,'; 8.8 3
= 3]
3.0
2.4
L=(Crinl2.3 - 108)~0:050
2 2.7 ' . . ; :
10-° 1077 10~> 1073 10°! 10! 108 109 10° 107 10°
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

We need a general way to scale the capability of neural networks.

(such as a Transformer or a new optimization paradigm)

Kaplan et al. Scaling Laws for Neural Language Models, ArXiv preprint 2001.08361 (2020)
50

Recent Progress of PINNs

Kolmogorov flow Taylor-Green vortex Turbulent channel flow

Incompressible Navier—Stokes equation

Ou 1
—+(u~V)u——Vp+E

2
T V-u
V-u=0, u=(u,v,w)

/” Physics-informed neural network "\ (" il boundairyand caussl POETsss | CD Self-adaptive weightin i

o) R, » Adopt a series of

E t : i u | ic()_/Q‘I [ug](x)[” dx [:(0) =)\icﬁic(ﬁ) +)\bc£bc(0) +)\pde£pde(6)

i L 1| Automatic T 5 VoLie®) + [VoLoe(6) + [VoLpae®)] .

@ v || oiferentaton | 6@ = [[1Blwae0) acax do = 9ol tricks to enable stable
: : ": : u v Jw T ic, be e

@ W RS fa@ = [[Rl axa S

@ i ; E E E w(t) =exp | —e t 7,x)|? dx dr C SOAP tralnlng

ED e) w0 =ew ([[Ruwiemraar) | gr — argmin £(9) | 302 @

0 —
/ Physics-informed residual adaptive network (PirateNet) X K ’?ine‘d PINN\ > Fi rst time to su P port

ST E T T TR T e > m |
Dense layer } > ~ sl

Time 3D turbulence

' |
i 1
i : -
o, — G (e - @-{ e
coordinates embedding | 1 D el Dense layer Dense layer : Outputs o

1
1
1
Dense layer L X .

simulation

Space

KDense layer with random weight factorization: Dense(z) = o(Wz + b), W = diag (exp (s)) - Vj @Time marching with transfer Iearniny

Wang et al. Simulating Three-dimensional Turbulence with Physics-informed Neural Networks, ArXiv preprint 2507.08972 (2025)
51

Recent Progress of PINNs

High Precision Self-Similar Solution Discovery Solution Analysis
a Mathematical Modeling 9 b Highly accurate stable and unstable smooth
(@ fSeIf-similar Solution Ansatz - singularity solutions with up to double-float
insights from ‘ -
: ’ machine precision
ug + uty =0 u(z) = (1 - t)>U (y = W) candidate solution
- < Stable
=AU+ ((L+Ny+0)9,U =0 1st unstable
2nd unstable
R Self-similar ~ 3rdunstable
— solution candidate (iii) 4th unstable
& 0p f : ")
) . te(0,1) PINN Candidate U with scaling
-0.5 outputs rate A
. ——— > A=0.5
e -0.4 -0.2 0.0 0.2 0.4 X 10
[\ ~ —
> . .
- Machine Learning = O
s | (i) >
E (Physics-lnformed Neural Multi-stage training) -10 Stability analysis
5 Network (PINN) TR —-1000 0 1000 of the linearized PDE
£ / \ L ‘ y around smooth
g (y1,92) 105 Equation residual singularity solutions
o
< First . le-9
g stage
107
Set°°“d 0 Characterization of
102 i stable and
> | fields 0 50k 100k 1 unstable solutions
Niter _)
o S Gauss-Newton optimization == =1l
Equation cond. P
residuals
I el ez €3 | |G(yc) =G, | ~ ~
residual l— . . ¢
mactine larring e S
oe oe 2 \ F—— : pertu i iV :
\ By By, | (oss] y—‘) N modeling insights from singularity solution solution remains stable to
K o / perturbations

Wang et al. Discovery of Unstable Singularities, ArXiv preprint 2509.14185 (2025)
52

Overview of Neural PDE Solvers

Small data Some data Big data
Data
Physics
Lots of physics Some physics No physics

Pure Physics Hybrid Data-Physics ‘ Pure Data ‘

* Numerical Solvers (FEMs) e Hybrid Simulators (NCLaw) * Neural Operators / Neural

* Physics-Informed Neural Networks ¢ Physics-Informed Neural Operator Surrogates (DeepONet, Transolver)

/ Neural-FEMs (PINO) * General Deep Models

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422—-440 (2021)
53

Neural-Solver-Library

(" Neural-Solver-Library ' public

¥ main ~

w syx11237744 update pipe script

[R e B o D o B

> EditPins ~

¥ 1Branch © 0 Tags Q Gotofile t

148c2eb - 3 weeks ago

data_provider fix pdebench_steady_darcy data_loader

exp update drag calculation

layers added the extra layernorm for Galerkin

models added the extra layernorm for Galerkin

pic update intro

scripts update pipe script

utils Update visual.py

.gitignore feat(visual): implement 1D and 3D structured data visualiz...
LICENSE Initial commit

README.md Update README.md

requirements.txt feat(visual): implement 1D and 3D structured data visualiz...
run.py fix 1d MWT

README 38 MIT license

< Neural-Solver-Library (NeuralSolver)

Code Link:

& Watch 5 ~

Add file ~ <> Code ~

& 51 Commits

2 months ago
last month

2 months ago
2 months ago
3 months ago
3 weeks ago
2 months ago
2 months ago
4 months ago
2 months ago
2 months ago

2 months ago

7

% Fork 13 - Starred 153

About

A Library for Advanced Neural PDE
Solvers.

deep-learning pde-solver

neural-operators

Readme

MIT license
Activity

Custom properties
153 stars

5 watching

< O [¢ B

13 forks

Report repository

Releases

No releases published
Create a new release
Packages

No packages published

Publish your first package

Contributors 4

‘ | wuhaixu2016

_g syx11237744 sunyuanx22

https://qgithub.com/thuml/Neural-Solver-Library

-

v’ 17 different PDE solvers
v 6 standard benchmarks, PDEBench and

design tasks

Incoming

Wind

Task 1: Standard

Task 2: PDEBench Task 3: ShapeNet Car

Welcome to join us and add a new feature
to this Library!

54

https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library

Acknowledgement

Jianmin Wang

Mingsheng Long

Yuezhou Ma

Wojciech Matusik

Huakun Luo

<A NVIDIA.

. Pphysicsnemo

SIEMENS

Yuanxu Sun Huikun Weng

55

H I .
/ >
/ - 1
o™ Tsinghua University

Towards Practical Neural PDE Solvers

From RoPINN to ProPINN: Improved Optimization and Architecture

Haixu Wu
Computational Design and Fabrication Group, MIT CSAIL
a3 hs[s] [m] E Dec 19, 2025
] .;:I
1%
O et

RoPINN ProPINN

