Practical Neural PDE Solvers:

Complex Geometries & OOD Generalization

Haixu Wu

School of Software, Tsinghua University Oct 10, 2024

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

How to understand the world?

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

How to understand the world?

Images? Videos?

Real-world phenomena

Turbulence

Atmospheric circulation

Stress

Beyond appearances, these phenomena are governed by scientific rules.

Partial Differential Equations (PDEs)

an

> Fluid physics:

Navier-Stokes Equation for fluid dynamics

$$\begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \boldsymbol{U}) &= 0\\ \frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{U} \cdot \nabla \boldsymbol{U} &= \boldsymbol{f} + \frac{1}{\rho} \nabla \cdot (\boldsymbol{T}_{ij} \boldsymbol{e}_i \boldsymbol{e}_j)\\ \frac{\partial (e + \frac{1}{2} \boldsymbol{U}^2)}{\partial t} + \boldsymbol{U} \cdot \nabla (e + \frac{1}{2} \boldsymbol{U}^2) &= \boldsymbol{f} \cdot \boldsymbol{U} + \frac{1}{\rho} \nabla \cdot (\boldsymbol{U} \cdot \boldsymbol{T}_{ij} \boldsymbol{e}_i \boldsymbol{e}_j) + \frac{\lambda}{\rho} \Delta T \end{aligned}$$

Solid physics:

$$\rho^s \frac{\partial^2 \boldsymbol{u}}{\partial t^2} + \nabla \cdot \boldsymbol{\sigma} = 0$$

Inner stress of solid materials

Wide Applications

Airfoil design

Civil engineering

Weather forecasting

Vehicle manufacturing

Difficulties in Solving PDEs

David Hilbert

John von Neumann

Peter Lax

Richard Courant

Millennium Prize Problems

- Birch and Swinnerton-Dyer conjecture
- Hodge conjecture
- Navier–Stokes existence and smoothness
- P versus NP problem

- Riemann hypothesis
- Yang–Mills existence and mass gap
- Poincaré conjecture (Solved)

It is really hard (usually impossible) to obtain the analytic solution of PDEs

PDE Solvers

Classic Numerical Methods

New Task
$$\longrightarrow$$
 FEM, Spectral, etc \longrightarrow Results

- Recalculation for every new sample
- Each round will take huge costs

Stable but Slow

PDE Solvers

Classic Numerical Methods

- Recalculation for every new sample
- Each round will take huge costs

Stable but Slow

Neural PDE Solver

- \succ Training once, inference a lot
- Each round needs several seconds

An efficient surrogate tool (In expectation)

Challenges for Neural PDE Solvers

Most of Previous Neural PDE Solvers

Toy Problems & Small Models & Limited Diversity

- $> 64 \times 64$ Inputs
- Less than 1M Parameters
- Fixed Viscosity and Boundary

Challenges for Neural PDE Solvers

Practical Applications:

Large-scale Meshes & Diverse Applications

We need practical neural solvers for <u>large-scale meshes</u> and <u>diverse PDEs</u>

Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

Diverse PDEs, e.g. boundaries, coefficients, forces

2. Generalizable Model: Unisolver

Transolver: A Fast Transformer Solver for PDEs on General Geometries

Haixu Wu 1 Huakun Luo 1 Haowen Wang 1 Jianmin Wang 1 Mingsheng Long 1

Haixu Wu

Huakun Luo

Haowen Wang

Jianmin Wang

Mingsheng Long

Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

- 1. Large-scale meshes → Huge computation cost
- 2. Complex and unstructured geometrics \rightarrow Complex geometric learning
- 3. Multiphysics interaction \rightarrow Intricate physical correlations

Previous Work: Geometric Deep Learning

(1) Mesh

(2) Point Cloud

GraphSAGE, MeshGraphNet, etc

PointNet, Point Transformer, etc

Excels in geometry modeling but fail in physics learning

Previous Work: Geometry-General Neural Operators

(1) GNN as Operators GNO, GINO, etc

(2) FNO-Variants

geoFNO, SFNO, etc

Only focus on local physics or limited to periodic boundary

Transformer-based PDE Solvers

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral OFormer, Galerkin Transformer, etc

- 1. Quadratic complexity (The effective length of GPT-4 is only 64k)
- 2. Hard to capture physical correlations among massive points

Hsieh et al. RULER: What's the Real Context Size of Your Long-Context Language Models? COLM 2024

Transformer-based PDE Solvers

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral OFormer, Galerkin Transformer, etc

How to efficiently capture physical correlations underlying discretized meshes is the key to "transform" Transformers into practical PDE solvers

Related Work

(1) Linear Transformers

- 1. Distracted attention
- 2. Individual points is insufficient for physics learning

(2) Vision Transformer

Augment features with patch √ Not applicable to irregular meshes

A foundational Idea of Transolver

Previous Work

Being "trapped" to superficial and unwieldy meshes

Discretized Domain

Difficulties in Complexity, Geometry, Physics

A foundational Idea of Transolver

Discretized Domain

Previous Work Being "trapped" to superficial and unwieldy meshes Difficulties in Complexity, Geometry, Physics

Transolver Learning intrinsic physical states under complex and large-scale geometrics Better Complexity, Geometry, Physics Modeling

Physics Domain

Learning Physical States

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

Mesh points under **similar physical states** will be ascribed to the same **slice** and then encoded into a physics-aware token.

Overview of Transolver

Transolver applies attention to learned physical states (Physics-Attention) (1) Mesh \rightarrow physics (2) Attention (Integral) (3) Physics \rightarrow Mesh

Overview of Transolver

$\textbf{Mesh} \rightarrow \textbf{physics}$

1. Assign each point to slices with weights learned from features

$$\{\mathbf{w}_i\}_{i=1}^N = \left\{ \underbrace{\text{Softmax}}_{i=1} \left(\operatorname{Project}(\mathbf{x}_i) \right) \right\}_{i=1}^N \qquad \text{N Points to } M \text{ Slices} \\ \mathbf{s}_j = \left\{ \mathbf{w}_{i,j} \mathbf{x}_i \right\}_{i=1}^N, \qquad \text{Softmax for low-entropy slices}$$

$\textbf{Mesh} \rightarrow \textbf{physics}$

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens

$$\mathbf{z}_{j} = \frac{\sum_{i=1}^{N} \mathbf{s}_{j,i}}{\sum_{i=1}^{N} \mathbf{w}_{i,j}} = \frac{\sum_{i=1}^{N} \mathbf{w}_{i,j} \mathbf{x}_{i}}{\sum_{i=1}^{N} \mathbf{w}_{i,j}}$$

$\textbf{Mesh} \rightarrow \textbf{physics}$

- 1. Why slices can learn physically internal-consistent information?
- 2. Learning slice is different from splitting computation area Ascribe physically similar but spatially distant points to the same slice

Visualization of Learned Slices

M is set as 32. Different slices capture different patterns.

Overview of Transolver

Approximate Integral to solve PDEs

Attention among physics tokens

$$\mathbf{q}, \mathbf{k}, \mathbf{v} = \text{Linear}(\mathbf{z}), \ \mathbf{z}' = \text{Softmax}\left(\frac{\mathbf{qk}^{\mathsf{T}}}{\sqrt{C}}\right) \mathbf{v}$$

Canonical attention among physics tokens

- 1. Complexity: $\mathcal{O}(N^2C) \rightarrow \mathcal{O}(M^2C)$
- 2. Capture interactions among physics states
- 3. Theorem: Attention as learnable integral operator

Overview of Transolver

Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral

Since attention mechanism is applied to tokens encoded from slices, the step 2 (attention part of Transolver) is a learnable integral for the physics domain

Is Physics-Attention still an *input domain* integral?

$$\mathcal{G}(\boldsymbol{u})(\mathbf{g}^*) = \int_{\Omega} \kappa(\mathbf{g}^*, \boldsymbol{\xi}) \boldsymbol{u}(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}$$

Theoretical Understanding of Transolver

 $\mathcal{G}(\boldsymbol{u})(\mathbf{g}) = \int_{\Omega} \kappa(\mathbf{g}, \boldsymbol{\xi}) \boldsymbol{u}(\boldsymbol{\xi}) \mathrm{d} \boldsymbol{\xi}$ $=\int_{\Omega} \kappa_{\mathrm{ms}} ig(\mathbf{g}, oldsymbol{\xi}_{\mathrm{s}}ig) oldsymbol{u}_{\mathrm{s}}\left(oldsymbol{\xi}_{\mathrm{s}}
ight) \mathrm{d}oldsymbol{g}^{-1}(oldsymbol{\xi}_{\mathrm{s}})$ $(\kappa_{\rm ms}(\cdot, \cdot): \Omega \times \Omega_{\rm s} \to \mathbb{R}^{C \times C}$ is a kernel function) $\mathbf{u} = \int_{\Omega_{s}} \kappa_{\mathrm{ms}} ig(\mathbf{g}, oldsymbol{\xi}_{\mathrm{s}} ig) oldsymbol{u}_{\mathrm{s}} \left(oldsymbol{\xi}_{\mathrm{s}} ig) ig| \mathrm{det} (
abla_{oldsymbol{\xi}_{\mathrm{s}}} oldsymbol{g}^{-1}(oldsymbol{\xi}_{\mathrm{s}})) |\mathrm{d}oldsymbol{\xi}_{\mathrm{s}} ig)$ $= \int_{\Omega} \left(\frac{\int_{\Omega_{s}} w_{\mathbf{g},\boldsymbol{\xi}'_{s}} \kappa_{ss}(\boldsymbol{\xi}'_{s},\boldsymbol{\xi}_{s}) \mathrm{d}\boldsymbol{\xi}'_{s}}{\int_{\Omega} w_{\mathbf{g},\boldsymbol{\xi}'} \mathrm{d}\boldsymbol{\xi}'_{s}} \right) \boldsymbol{u}_{s}(\boldsymbol{\xi}_{s}) |\det(\nabla_{\boldsymbol{\xi}_{s}}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_{s}))| \mathrm{d}\boldsymbol{\xi}_{s} \qquad (\kappa_{\mathrm{ms}} \text{ is a linear combination of } \kappa_{\mathrm{ss}} \text{ with weights } w_{*,*})$ $= \int_{\Omega_{s}} \underbrace{w_{\mathbf{g},\boldsymbol{\xi}'_{s}}}_{\boldsymbol{\Omega}_{s}} \int_{\Omega_{s}} \underbrace{\kappa_{ss}(\boldsymbol{\xi}'_{s},\boldsymbol{\xi}_{s})}_{\boldsymbol{\Omega}_{s}} \underbrace{w_{\mathbf{g},\boldsymbol{\xi}'_{s}}(\boldsymbol{\xi}'_{s},\boldsymbol{\xi}_{s})}_{\boldsymbol{\Omega}_{s}} |\det(\nabla_{\boldsymbol{\xi}_{s}}\boldsymbol{g}^{-1}(\boldsymbol{\xi}_{s}))| \mathrm{d}\boldsymbol{\xi}_{s} \mathrm{d}\boldsymbol{\xi}'_{s}$ (Suppose that $\int_{\Omega_{s}} w_{\mathbf{g},\boldsymbol{\xi}'_{s}} \mathrm{d}\boldsymbol{\xi}'_{s} = 1$) $\approx \sum_{j=1}^{M} \mathbf{w}_{i,j} \sum_{t=1}^{M} \frac{\exp\left(\left(\mathbf{W}_{\mathbf{q}} \boldsymbol{u}_{\mathrm{s}}(\boldsymbol{\xi}_{\mathrm{s},j})\right) \left(\mathbf{W}_{\mathbf{k}} \boldsymbol{u}_{\mathrm{s}}(\boldsymbol{\xi}_{\mathrm{s},t})\right)^{\mathsf{T}}/\tau\right)}{\sum_{p=1}^{M} \exp\left(\left(\mathbf{W}_{\mathbf{q}} \boldsymbol{u}_{\mathrm{s}}(\boldsymbol{\xi}_{\mathrm{s},j})\right) \left(\mathbf{W}_{\mathbf{k}} \boldsymbol{u}_{\mathrm{s}}(\boldsymbol{\xi}_{\mathrm{s},p})\right)^{\mathsf{T}}/\tau\right)} \mathbf{W}_{\mathbf{v}}\left(\frac{\sum_{p=1}^{N} \mathbf{w}_{p,t} \boldsymbol{u}(\mathbf{g}_{p})}{\sum_{p=1}^{N} \mathbf{w}_{p,t}}\right)$ (Lemma A.1) Eq. (4) $=\sum_{i=1}^{M} \mathbf{w}_{i,j} \sum_{t=1}^{M} \frac{\exp(\mathbf{q}_j \mathbf{k}_t^{\mathsf{T}} / \tau)}{\sum_{t=1}^{M} \exp(\mathbf{q}_i \mathbf{k}_t^{\mathsf{T}} / \tau)} \mathbf{v}_t,$ All the designs in Transolver can be directly derived.

Experiments

Six standard benchmarks, two practical design tasks More than 20 baselines

Standard PDE-Solving Benchmarks

	POINT CLOUD	Struc	TURED MES	Н	R EGULAR GRID		
MODEL	ELASTICITY	PLASTICITY	Airfoil	Pipe	NAVIER-STOKES	DARCY	
FNO (LI ET AL., 2021)	/	/	/	/	0.1556	0.0108	
WMT (GUPTA ET AL., 2021)	0.0359	0.0076	0.0075	0.0077	0.1541	0.0082	
U-FNO (WEN ET AL., 2022)	0.0239	0.0039	0.0269	0.0056	0.2231	0.0183	
GEO-FNO (LI ET AL., 2022)	0.0229	0.0074	0.0138	0.0067	0.1556	0.0108	
U-NO (RAHMAN ET AL., 2023)	0.0258	0.0034	0.0078	0.0100	0.1713	0.0113	
F-FNO (TRAN ET AL., 2023)	0.0263	0.0047	0.0078	0.0070	0.2322	0.0077	
LSM (WU ET AL., 2023)	0.0218	0.0025	<u>0.0059</u>	0.0050	0.1535	0.0065	
GALERKIN (CAO, 2021)	0.0240	0.0120	0.0118	0.0098	0.1401	0.0084	
HT-NET (LIU ET AL., 2022)	/	0.0333	0.0065	0.0059	0.1847	0.0079	
OFORMER (LI ET AL., 2023C)	0.0183	0.0017	0.0183	0.0168	0.1705	0.0124	
GNOT (HAO ET AL., 2023)	<u>0.0086</u>	0.0336	0.0076	0.0047	0.1380	0.0105	
FACTFORMER (LI ET AL., 2023D)	/	0.0312	0.0071	0.0060	0.1214	0.0109	
ONO (XIAO ET AL., 2024)	0.0118	0.0048	0.0061	0.0052	<u>0.1195</u>	0.0076	
TRANSOLVER (OURS) Relative Promotion	0.0064 25.6%	0.0012 29.4%	0.0053 10.2%	0.0033 29.7%	0.0900 24.7%	0.0057 12.3%	

Transolver achieves 22% error reduction over the second-best model

Practical Design Tasks

		Shape-Ne	ET CAR			AIRFRA	ANS	
MODEL*	VOLUME ↓	Surf \downarrow	$C_D\downarrow$	$ ho_D\uparrow$	Volume \downarrow	Surf \downarrow	$C_L\downarrow$	$ ho_L\uparrow$
SIMPLE MLP	0.0512	0.1304	0.0307	0.9496	0.0081	0.0200	0.2108	0.9932
GRAPHSAGE (HAMILTON ET AL., 2017)	0.0461	0.1050	0.0270	0.9695	0.0087	0.0184	<u>0.1476</u>	<u>0.9964</u>
POINTNET (QI ET AL., 2017)	0.0494	0.1104	0.0298	0.9583	0.0253	0.0996	0.1973	0.9919
GRAPH U-NET (GAO & JI, 2019)	0.0471	0.1102	0.0226	0.9725	0.0076	0.0144	0.1677	0.9949
MESHGRAPHNET (PFAFF ET AL., 2021)	0.0354	0.0781	0.0168	0.9840	0.0214	0.0387	0.2252	0.9945
GNO (LI ET AL., 2020A)	0.0383	0.0815	0.0172	0.9834	0.0269	0.0405	0.2016	0.9938
GALERKIN (CAO, 2021)	0.0339	0.0878	0.0179	0.9764	0.0074	0.0159	0.2336	0.9951
GEO-FNO (LI ET AL., 2022)	0.1670	0.2378	0.0664	0.8280	0.0361	0.0301	0.6161	0.9257
GNOT (HAO ET AL., 2023)	0.0329	0.0798	0.0178	0.9833	<u>0.0049</u>	0.0152	0.1992	0.9942
GINO (LI ET AL., 2023A)	0.0386	0.0810	0.0184	0.9826	0.0297	0.0482	0.1821	0.9958
3D-GEOCA (DENG ET AL., 2024)	<u>0.0319</u>	<u>0.0779</u>	<u>0.0159</u>	<u>0.9842</u>	/	/	/	/
TRANSOLVER (OURS)	0.0207	0.0745	0.0103	0.9935	0.0037	0.0142	0.1030	0.9978

Design-oriented metrics: Drag/lift coefficients and their Spearman's correlation

Transolver performs best in both physics and design-oriented metrics

Efficiency

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.

Attention Visualization

(a) Learned Slice Visualization

(b) Attention Map Visualization

Physics-attention works well even in broken meshes and

achieves more concentrated attention.

Showcases

Transolver excels in solving multiphysics PDEs on hybrid geometrics

Pursuing PDE Foundation Models: Scalability

- 1. **Resolution:** Consistent performance at varied scales
- 2. Data: Benefiting from larger training data
- 3. Parameter: Benefiting from more parameters

Pursuing PDE Foundation Models: Generalization

	OOD RI	EYNOLDS		ANGLES	
MODELS	$ C_L \downarrow$	$ ho_L\uparrow$	$ C_L \downarrow$	$ ho_L\uparrow$	Re $^{10^4}$ - $^{10^5}$
SIMPLE MLP	0.6205	0.9578	0.4128	0.9572	
GRAPHSAGE (2017)	0.4333	0.9707	0.2538	0.9894	
POINTNET (2017)	0.3836	0.9806	0.4425	0.9784	
GRAPH U-NET (2019)	0.4664	0.9645	0.3756	0.9816	
MESHGRAPHNET (2021)	1.7718	0.7631	0.6525	0.8927	Re > 10
GNO (2020A)	0.4408	0.9878	0.3038	0.9884	
GALERKIN (2021)	0.4615	0.9826	0.3814	0.9821	
GNOT (2023)	0.3268	0.9865	0.3497	0.9868	Angle of attack
GINO (2023A)	0.4180	0.9645	0.2583	<u>0.9923</u>	
TRANSOLVER (OURS)	0.2996	0.9896	0.1500	0.9950	Flow direction

Transolver still performs best (Spearman's correlation ~ 99%) in OOD settings

Pursuing PDE Foundation Models: Versatile

Model	MSE↓
GNN (SANCHEZ-GONZALEZ ET AL., 2020) GNN + TRANSOLVER (OURS)	0.0182 0.0069
R ELATIVE P ROMOTION	62.1%

Transolver can also be extended to Lagrangian Settings (Ever-changing geometrics)

Open Source

Transolver (Public)		🖒 Edit Pins 👻	⊙ Watch 5 ▼	$\frac{99}{6}$ Fork 6 \rightarrow \bigstar Starred 70		
ያ main 👻 ያ 1 Branch 📀 0 Tags	Q Go to file	t Add file 👻	<> Code -	About		
wuhaixu2016 Update README.md		ce78439 · last month	🕚 15 Commits	About code release of "Transolver: Fast Transformer Solver for PDEs o		
Airfoil-Design-AirfRANS	last month	General Geometries", ICML 2024 Spotlight.				
Car-Design-ShapeNetCar	4 months ago	https://arxiv.org/abs/2402.02366				
PDE-Solving-StandardBenchmark	rename		4 months ago	따 Readme		
p ic	init code					
🗋 .gitignore	itignore Initial commit					
	Initial commit		5 months ago	 5 watching 		
Physics_Attention.py	rename		4 months ago	양 6 forks		
README.md	Update README.md		4 months ago	Report repository		
따 README 전 MIT license			∅ ∷≡	Releases No releases published		
Transolver (ICML 20	24 Spotlight)			Packages		
Transolver: A East Transformer Solver fo	r PDEs on General Geometries [Paper	[Slides] [Poster]		No packages published		

Code is available at https://github.com/thuml/Transolver

Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

Diverse PDEs, e.g. boundaries, coefficients, forces

2. Generalizable Model: Unisolver

Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers

Hang Zhou, Yuezhou Ma, Haixu Wu⊠, Haowen Wang, Mingsheng Long School of Software, BNRist, Tsinghua University, China

Hang Zhou

Yuezhou Ma

Haixu Wu

Haowen Wang Mingsheng Long

Neural Solvers for PDEs

Karniadakis, G. et al. Physics-informed machine learning, *Nature Review Physics* 3, 422–440 (2021)

What will Happen without PDE Information?

Varied External Force

Previous standard benchmarks only contain one type of viscosity and force.

Beyond data, we also need to know what kind of PDE we attempt to solve.

Unisolver: A Unification of Two Paradigms

In addition to simulated data, Unisolver also defines and utilizes **a complete set of PDE components**.

Complete PDE Components

Motivating example: vibrating string equation

$$\begin{array}{ll} \partial_{tt}u - a^{2}\partial_{xx}u = f(x,t), & (x,t) \in (0,L) \times (0,T), & (1a) \\ u(0,t) = 0, \ u(L,t) = 0, & t \in (0,T], & (1b) \\ u(x,0) = \phi(x), \ \partial_{t}u(x,0) = \psi(x), & x \in [0,L]. & (1c) \end{array}$$

- The coefficient *a* represents physical quantity such as tension, linear density
- *f* represents the external force driving the vibrations of the string
- Equation (1b) sets boundary conditions at endpoints
- Equation (1c) specifies initial conditions
- The domain geometry spans the range $[0, L] \times [0, T]$

Complete PDE Components

Motivating example: vibrating string equation

$$\begin{array}{ll} \partial_{tt}u - a^{2}\partial_{xx}u = f(x,t), & (x,t) \in (0,L) \times (0,T), & (1a) \\ u(0,t) = 0, \ u(L,t) = 0, & t \in (0,T], & (1b) \\ u(x,0) = \phi(x), \ \partial_{t}u(x,0) = \psi(x), & x \in [0,L]. & (1c) \end{array}$$

The analytical solution of the above equations is:

- The PDE is solved under complex interactions between equation components
- The impact of the external force is imposed point-wisely
- The coefficient exerts a consistent influence over the domain

Complete PDE Components

Category	Component	Description
Domain-wise components	Equation formulation Equation coefficient Boundary condition type	The symbolic expression of the PDE Coefficients in the PDE equation Type of boundary condition (e.g., Dirichlet, Neumann)
Point-wise components	External force Domain geometry Boundary value function	Forces acting at specific points The shape and size of the domain Value functions at the domain boundaries

- Category PDE components into domain- and point-wise components:
- Here the equation formulation refers to the symbolic expression of PDEs, which can be encoded by Large Language Models

Prompt: $u_{tt} - a^2 u_{xx} = f(x, t)$

PDE-Conditional Transformer

1 Unify Embedding 2 Condition Aggregation

PDE-Conditional Transformer

PDE-Conditional Transformer

Experiments

Benchmarks	#Dim	#Resolution	#Sample	s #GPU hours	Symbols	Coefficient	Force	Geometry	Boundary
HeterNS	2D+Time	(64,64,10)	15k	$\sim 60h$	×	\checkmark	\checkmark	×	×
1D time-dependent PDEs	1D+Time	(256,100)	3M	$\sim 3000 h$	\checkmark	\checkmark	\checkmark	×	\checkmark
2D mixed PDEs	2D+Time	(128,128,10)	74.1k	$\sim \! 800 h$	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
					I				

- HeterNS contains multiple viscosity coefficients and external force
- PDEformer proposes a large-scale dataset with 3M samples of 1D PDEs, including multiple equation coefficients, external force and boundary conditions
- DPOT collects 12 datasets from FNO, PDEBench, PDEArena and CFDBench, with PDEs varying in coefficients, external force, geometries and boundary conditions

Heterogeneous 2D Navier-Stokes Equation

- In-distribution Test (average 27.4% promotion over the second best)
- Zero-Shot Generalization (average 43.9% promotion over the second best)

HeterNS	Viscosity	Viscosity			n Test	Zero-shot Generalization						
neterns	Params	v = 1e-5	$\nu = 5e-5$	$\nu = 1e-4$	$\nu = 5e-4$	$\nu = 1e-3$	v = 8e-6	$\nu = 3e-5$	$\nu = 8e-5$	$\nu = 3e-4$	$\nu = 8e-4$	$\nu = 2e-3$
FNO	4.7M	0.0669	0.0225	0.0114	0.0031	0.0011	0.0702	0.0373	0.0141	0.0088	<u>0.0084</u>	0.2057
PINO	4.7M	0.1012	0.0443	0.0263	0.0073	0.0031	0.1014	0.0646	0.0299	0.0142	0.0081	0.1894
ViT	4.8M	0.0432	0.0206	<u>0.0098</u>	0.0031	0.0015	0.0458	<u>0.0353</u>	<u>0.0119</u>	0.0100	0.0174	<u>0.1878</u>
Factformer	5.1M	0.0571	0.0259	0.0148	<u>0.0018</u>	<u>0.0010</u>	0.0489	0.0642	0.0167	0.1808	0.0639	0.3224
ICON	4.5M	0.0585	0.0267	0.0144	0.0054	0.0029	0.0606	0.0387	0.0169	0.0246	0.0110	0.2149
MPP	4.9M	0.0775	0.0496	0.0321	0.0098	0.0043	0.0796	0.0648	0.0376	0.0387	0.0236	0.2595
Unisolver	4.1M	0.0321	0.0094	0.0051	0.0015	0.0008	0.0336	0.0178	0.0064	0.0066	0.0096	0.1504
Promotion	/	25.7%	54.4%	48.0%	16.7%	20.0%	26.6%	49.6%	46.2%	25.0%	/	19.9%

Varied viscosity, Fixed external force

Heterogeneous 2D Navier-Stokes Equation

- In-distribution Test (average 27.4% promotion over the second best)
- Zero-Shot Generalization (average 43.9% promotion over the second best)

HeterNS	Force	In-d	istribution	Test	Zero-shot Generalization					
	Params	$\omega = 1$	$\omega = 2$	$\omega = 3$	$\omega = 0.5$	$\omega = 1.5$	$\omega = 2.5$	$\omega = 3.5$		
FNO	4.7M	0.0640	0.0661	0.1623	1.1100	0.1742	0.1449	0.2974		
PINO	4.7M	0.0914	0.1012	0.2707	1.0570	0.5010	0.4660	0.8380		
ViT	4.8M	<u>0.0348</u>	0.0432	0.1000	0.7900	0.1412	0.1240	0.2080		
Factformer	5.1M	0.0409	0.0570	0.0982	0.8591	0.1207	0.1243	0.2047		
ICON	4.5M	0.0435	0.0585	0.1345	1.1950	0.5295	0.5009	0.8231		
MPP	4.9M	0.0596	0.0775	0.1620	<u>0.5532</u>	0.2224	0.2180	0.3803		
Unisolver	4.1M	0.0244	0.0321	0.0720	0.0980	0.0770	0.0720	0.1740		
Promotion	/	29.9%	25.7%	26.7%	82.3%	36.2%	41.9%	15.0%		

Fixed viscosity, Varied external force

Heterogeneous 2D Navier-Stokes Equation

All showcases generated with the same initial condition but with varied

coefficients. Different viscosities presents quite different dynamics.

1D Time-dependent PDEs proposed by PDEformer

- 3 million 1D PDEs with varied coefficients, external force, boundary conditions and <u>equation symbols</u>
- OOD downstream PDE datasets

selected from PDEBench

1D Time-dep	Tasks	In-distribution		Zero-shot Burge	ers	Zero-shot Advection
endent PDEs	Params	Test	$ $ $\nu = 0.1$	$\nu = 0.01$	$\nu = 0.001$	$\beta = 0.1$
PDEformer	22M	0.0225	0.00744	0.0144	0.0393	0.0178
Unisolver	19M	0.0108	0.00513	0.00995	0.0299	0.0138
Promotion	/	52.0%	31.0%	30.9%	23.9%	22.5%

Showcases

2D Mixed PDEs proposed by DPOT

A dataset mixed from 12 subsets collected by DPOT, with **varied coefficients**,

external force, boundary conditions and geometries

Varying Boundary Condition

Varying Coefficients

2D	Tasks FNO-		NO-NS	- <i>v</i>	 	PDEBenc	ch-CNS-(M, ζ) PD		PDEBench		PDEArena		CFDBench-NS	Average
Mixed PDEs	Params	1e-5	1e-4	1e-3	(1, 0.1)	(1, 0.01)	(0.1, 0.1)	(0.1, 0.01)	DR	SWE	NS	NS-Force	Geometry	Error
DPOT	30M	5.53	4.42	1.31	1.53	3.37	1.19	1.87	3.79	0.66	9.91	31.6	0.70	5.50
Unisolver	33M	4.17	3.36	0.61	1.23	2.89	1.01	1.59	4.39	0.45	6.87	27.4	0.54	4.54
Promotion (%)	/	24.6	24.0	53.4	19.6	14.2	15.1	15.0	/	31.8	30.7	13.3	22.9	17.5

Scalability

We progressively increase the **training data by 60 times** and **the model parameters by 21 times**, plotting the Relative L2 error on a log-log scale

Effect of LLM

Unisolver can utilize the prior knowledge of LLM to embed PDE symbolics, where

similar PDEs are embedded to closer representations.

 $\begin{array}{l} \partial_t u + f_0(u) + s(x) + \partial_x (f_1(u) - \kappa(x)\partial_x u) = 0, \ (x,t) \in [-1,1] \times [0,1]. \\ u(0,x) = g(x), \ x \in [-1,1]. \ \ f_i(u) = c_{i1}u + c_{i2}u^2 + c_{i3}u^3, i = 0,1. \end{array}$

Fine-tunning Performance

Finetune Unisolver trained from training sets and

finetune the model with 20% training epochs.

- ✓ Fast adaption to new PDEs
- Consistently improve model performance

Experiments with Incomplete Components

Under the incomplete PDE components (30% missing), Unisolver still the best.

But a complete set of components will further bring **21.6% average promotion**.

Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

Diverse PDEs, e.g. boundaries, coefficients, forces

2. Generalizable Models: Unisolver

https://github.com/thuml

https://ise.thss.tsinghua.edu.cn/~mlong/

Practical Neural PDE Solvers:

Complex Geometries & OOD Generalization

Haixu Wu

School of Software, Tsinghua University Oct 10, 2024

