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Turbulence Atmospheric circulation

Real-world phenomena

Stress

Beyond appearances, these phenomena are governed by 

scientific rules.



Partial Differential Equations (PDEs)

➢ Fluid physics:

➢ Solid physics:

Navier-Stokes Equation

for fluid dynamics

Inner stress 

of solid materials



Wide Applications

Airfoil design Weather forecasting

Civil engineering Vehicle manufacturing



Difficulties in Solving PDEs

It is really hard (usually impossible) to obtain the analytic solution of PDEs

➢ Birch and Swinnerton-Dyer conjecture

➢ Hodge conjecture

➢ Navier–Stokes existence and smoothness

➢ P versus NP problem

John von Neumann Peter LaxDavid Hilbert Richard Courant

➢ Riemann hypothesis

➢ Yang–Mills existence and mass gap

➢ Poincaré conjecture (Solved)

Millennium Prize Problems



PDE Solvers

Classic Numerical Methods

FEM, Spectral, etcNew Task Results

➢ Recalculation for every new sample

➢ Each round will take huge costs

Stable but Slow

Days or even Months



PDE Solvers

Neural PDE Solver

Deep Models
Data Loss

➢ Training once, inference a lot

➢ Each round needs several seconds

An efficient surrogate tool

(In expectation)

New Task Results

Classic Numerical Methods

➢ Recalculation for every new sample

➢ Each round will take huge costs

Stable but Slow

FEM, Spectral, etcNew Task Results



Challenges for Neural PDE Solvers

Most of Previous Neural PDE Solvers

Toy Problems & Small Models & Limited Diversity

(d) Darcy

Input:

Porous medium

Output: 

Fluid pressure

through medium

(e) AirFoil

Input:

Airfoil structure

Output:

Airflow velocity

Input:

Structure of 

elastic material

(a) Elasticity

Output: 

Inner stress

(f) Pipe

Input:

Pipe structure

Output:

Fluid velocity

Input:

Initial boundary 

condition

Output:

Displacement of

mesh points

(b) Plasticity

(c) Navier-Stokes

Input:

Fluid velocity

in the past

Output:

Fluid velocity

in the future

➢64 × 64 Inputs

➢Less than 1M Parameters

➢Fixed Viscosity and Boundary



Challenges for Neural PDE Solvers

Practical Applications:

Large-scale Meshes & Diverse Applications

We need practical neural solvers for large-scale meshes and diverse PDEs

Varied Geometries Physical Simulation



Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

2. Generalizable Model:

Unisolver

Large-scale Meshes

Diverse PDEs, e.g. boundaries, coefficients, forces



ICML | 2024 Spotlight
The Forty-first International Conference on Machine Learning

Haixu Wu Mingsheng LongJianmin WangHuakun Luo Haowen Wang



Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure



Challenges in Practical Industrial Design

Example: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

1. Large-scale meshes → Huge computation cost 

2. Complex and unstructured geometrics → Complex geometric learning

3. Multiphysics interaction → Intricate physical correlations



Previous Work: Geometric Deep Learning

(1) Mesh

GraphSAGE, MeshGraphNet, etc

(2) Point Cloud

PointNet, Point Transformer, etc

Excels in geometry modeling but fail in physics learning



Previous Work: Geometry-General Neural Operators

(1) GNN as Operators

GNO, GINO, etc

(2) FNO-Variants

geoFNO, SFNO, etc

Only focus on local physics or limited to periodic boundary



Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, etc

1. Quadratic complexity (The effective length of GPT-4 is only 64k)

2. Hard to capture physical correlations among massive points

Hsieh et al. RULER: What's the Real Context Size of Your Long-Context Language Models? COLM 2024



Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, etc

How to efficiently capture physical correlations underlying discretized meshes

is the key to “transform” Transformers into practical PDE solvers



Related Work

(1) Linear Transformers

1. Distracted attention

2. Individual points is insufficient for 

physics learning

(2) Vision Transformer

Augment features with patch ✓

Not applicable to irregular meshes



A foundational Idea of Transolver

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics



A foundational Idea of Transolver

Transolver

Learning intrinsic physical states under

complex and large-scale geometrics

Better Complexity, Geometry, Physics ModelingPhysics Domain

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics



…

(a) Slices for Darcy, 2D Regular Grid

…

(b) Slices for Elasticity, 2D Point Cloud (c) Slices for Airfoil, 2D Mesh

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

2023/12/18 15:07 .

:/// / /D /IC L2024/ . 1/2

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes

2023/12/18 16:09 pv_velo.html

file:///U sers/thuml/D esktop/IC ML2024/pv_velo.html 1/2

……

…

Learning Physical States

Mesh points under similar physical states will be ascribed to the same slice

and then encoded into a physics-aware token.



Overview of Transolver

Transolver applies attention to learned physical states (Physics-Attention)

① Mesh → physics ② Attention (Integral) ③ Physics → Mesh



Overview of Transolver

① Mesh → physics

To obtain physics-aware tokens



Mesh → physics

1. Assign each point to slices with weights learned from features

𝑵 Points to 𝑴 Slices

Softmax for low-entropy slices



Mesh → physics

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens



Mesh → physics

1. Why slices can learn physically internal-consistent information?

2. Learning slice is different from splitting computation area

Ascribe physically similar but spatially distant points to the same slice



Visualization of Learned Slices

M is set as 32. Different slices capture different patterns.



Overview of Transolver

② Attention among physics tokens

Approximate Integral to solve PDEs



Attention among physics tokens

1. Complexity: 𝒪(𝑁2𝐶) → 𝒪(𝑀2𝐶)

2. Capture interactions among physics states

3. Theorem: Attention as learnable integral operator

Canonical attention among physics tokens

…

(a) Slices for Darcy, 2D Regular Grid

…

(b) Slices for Elasticity, 2D Point Cloud (c) Slices for Airfoil, 2D Mesh

(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

2023/12/18 15:07 .

:/// / /D /IC L2024/ . 1/2

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes

2023/12/18 16:09 pv_velo.html
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Overview of Transolver

③ Physics → Mesh

Project physics information back to mesh



Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral

Since attention mechanism is applied to tokens encoded from slices, the step 2 

(attention part of Transolver) is a learnable integral for the physics domain

Is Physics-Attention still an input domain integral?



Theoretical Understanding of Transolver

All the designs in Transolver can be directly derived.



Experiments

Six standard benchmarks, two practical design tasks

More than 20 baselines



Standard PDE-Solving Benchmarks

Transolver achieves 22% error reduction over the second-best model



Practical Design Tasks

Design-oriented metrics: Drag/lift coefficients and their Spearman’s correlation

Transolver performs best in both physics and design-oriented metrics



Efficiency

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.



Attention Visualization

Physics-attention works well even in broken meshes and 

achieves more concentrated attention.



Showcases

Transolver excels in solving multiphysics PDEs on hybrid geometrics



Pursuing PDE Foundation Models: Scalability

1. Resolution: Consistent performance at varied scales

2. Data: Benefiting from larger training data

3. Parameter: Benefiting from more parameters



Pursuing PDE Foundation Models: Generalization

Transolver still performs best (Spearman’s correlation ~ 99%) in OOD settings 



Pursuing PDE Foundation Models: Versatile

Transolver can also be extended to 

Lagrangian Settings 

(Ever-changing geometrics)



Open Source

Code is available at https://github.com/thuml/Transolver

https://github.com/thuml/Transolver


Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

2. Generalizable Model:

Unisolver

Large-scale Meshes

Diverse PDEs, e.g. boundaries, coefficients, forces



Haixu WuHang Zhou Mingsheng LongHaowen WangYuezhou Ma



Neural Solvers for PDEs

Physics-Informed 

Neural Networks
Neural Operators

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)



What will Happen without PDE Information?

Initial 
Condition

Varied Viscosity

Varied External Force

One case

Previous standard benchmarks only contain one type of viscosity and force.

Beyond data, we also need to know what kind of PDE we attempt to solve.



Unisolver: A Unification of Two Paradigms

In addition to simulated data, Unisolver also defines and utilizes 

a complete set of PDE components.



Complete PDE Components

Motivating example: vibrating string equation 

 The coefficient 𝑎 represents physical quantity such as tension, linear density

 𝑓 represents the external force driving the vibrations of the string

 Equation (1b) sets boundary conditions at endpoints

 Equation (1c) specifies initial conditions

 The domain geometry spans the range 0, 𝐿 × [0, 𝑇]



Complete PDE Components

Motivating example: vibrating string equation 

 The analytical solution of the above equations is:

 The PDE is solved under complex interactions between equation components

 The impact of the external force is imposed point-wisely

 The coefficient exerts a consistent influence over the domain



Complete PDE Components

 Category PDE components into domain- and point-wise components:

 Here the equation formulation refers to the symbolic expression of PDEs, 

which can be encoded by Large Language Models



PDE-Conditional Transformer

① Unify Embedding ② Condition Aggregation



PDE-Conditional Transformer

① Unify Embedding



PDE-Conditional Transformer

② Condition Aggregation



Experiments

 HeterNS contains multiple viscosity coefficients and external force

 PDEformer proposes a large-scale dataset with 3M samples of 1D PDEs, including 

multiple equation coefficients, external force and boundary conditions

 DPOT collects 12 datasets from FNO, PDEBench, PDEArena and CFDBench, with 

PDEs varying in coefficients, external force, geometries and boundary conditions



Heterogeneous 2D Navier-Stokes Equation

 In-distribution Test (average 27.4% promotion over the second best)

 Zero-Shot Generalization (average 43.9% promotion over the second best)

Varied viscosity, Fixed external force



Heterogeneous 2D Navier-Stokes Equation

 In-distribution Test (average 27.4% promotion over the second best)

 Zero-Shot Generalization (average 43.9% promotion over the second best)

Fixed viscosity, Varied external force



Heterogeneous 2D Navier-Stokes Equation

 All showcases generated with the same initial condition but with varied 

coefficients. Different viscosities presents quite different dynamics.



1D Time-dependent PDEs proposed by PDEformer

 3 million 1D PDEs with varied 

coefficients, external force, boundary 

conditions and equation symbols

 OOD downstream PDE datasets

selected from PDEBench



Showcases



2D Mixed PDEs proposed by DPOT

A dataset mixed from 12 subsets collected 

by DPOT, with varied coefficients, 

external force, boundary conditions and 

geometries



Showcases



Scalability

We progressively increase the training data by 60 times and the model 

parameters by 21 times, plotting the Relative L2 error on a log-log scale



Effect of LLM

Unisolver can utilize the prior knowledge of LLM to embed PDE symbolics, where 

similar PDEs are embedded to closer representations.



Fine-tunning Performance

Finetune Unisolver trained from training sets and 

finetune the model with 20% training epochs.

✓ Fast adaption to new PDEs

✓ Consistently improve model performance



Experiments with Incomplete Components

Under the incomplete PDE components (30% missing), Unisolver still the best.

But a complete set of components will further bring 21.6% average promotion.



Our Exploration for Practical Neural PDE Solvers

1. Foundation Backbone:

Transolver

2. Generalizable Models:

Unisolver

Large-scale Meshes

Diverse PDEs, e.g. boundaries, coefficients, forces

https://github.com/thuml

https://ise.thss.tsinghua.edu.cn/~mlong/

https://github.com/thuml
https://ise.thss.tsinghua.edu.cn/~mlong/
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