
Haixu Wu Wojciech MatusikJianmin WangMinghao Guo Yuezhou Ma Yuanxu Sun Mingsheng Long

Code Link: https://github.com/thuml/FlashBias
1.5x Speedup for Pairformer in AlphaFold 3; 2x Speedup for Swin Transformer v2. Try FlashBias!

https://github.com/thuml/FlashBias

Attention in Advanced Language Models

Pangu-Weather

Press et al., Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation, ICLR 2022

ALiBi Bias

A2en3on in Advanced Vision Models

Pangu-Weather

Liu et al., Swin Transformer V2: Scaling Up Capacity and ResoluHon, CVPR 2022

Relative Position Bias

Relative Position Bias

Attention in Advanced Scientific Models

Pangu-Weather

Abramson et al., Accurate structure predicHon of biomolecular interacHons with AlphaFold 3, Nature 2024

Pair Representa2on Bias

Attention in Advanced Scientific Models

Pangu-Weather

Bi et al., Accurate medium-range global weather forecasting with 3D neural networks, Nature 2023

Earth-specific Positional Bias

Attention with Bias

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [24] for computer vision, ALiBi bias is used in language modeling [29] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [26], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5→ speedup for AlphaFold and over 2→ speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [39] contains queries q ↑ RN→C , keys k ↑ RM→C and values v ↑ RM→C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk↑
↓
C

+ b)v. (1)

2
, bias

Introduce prior knowledge to
guide a>en2on learning

Vanilla FlashA2en3on

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [24] for computer vision, ALiBi bias is used in language modeling [29] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [26], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5→ speedup for AlphaFold and over 2→ speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [39] contains queries q ↑ RN→C , keys k ↑ RM→C and values v ↑ RM→C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk↑
↓
C

+ b)v. (1)

2

Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, NeurIPS 2022
Dao et al., FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, ICLR 2024

SRAM
19 TB/s (20 MB)

HBM
1.5 TB/s (40 GB)

Query, Key, Value

Results

SRAM
19 TB/s (20 MB)

HBM
1.5 TB/s (40 GB)

Query, Key, Value,
A;en<on Score

Attention Score
Results

Ø Standard ImplementaIon: Quadra<c IO Complexity

Ø FlashAttention: Reduced IO Complexity

Vanilla FlashAttention Fails

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [24] for computer vision, ALiBi bias is used in language modeling [29] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [26], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5→ speedup for AlphaFold and over 2→ speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [39] contains queries q ↑ RN→C , keys k ↑ RM→C and values v ↑ RM→C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk↑
↓
C

+ b)v. (1)

2

Dao et al., FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness, NeurIPS 2022
Dao et al., FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning, ICLR 2024

SRAM
19 TB/s (20 MB)

HBM
1.5 TB/s (40 GB)

Query, Key, Value,
A;en<on Score

Attention Score
Results

Ø Standard ImplementaIon: Quadra<c IO Complexity

Ø FlashAttention: Quadratic IO Complexity

SRAM
19 TB/s (20 MB)

HBM
1.5 TB/s (40 GB)

Query, Key, Value
Bias

Results

⚠

Challenge in Optimizing Attention with Bias

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Figure 1: (a-b) Comparison between attention mask and bias, where the spatial bias is from Swin
Transformer [24] for computer vision, ALiBi bias is used in language modeling [29] and pair bias is
from AlphaFold [1]. (c) FlashAttention needs to read bias tensors from HBM to the on-chip SRAM.

sparsity nature of masks enables possible computation reduction. However, unlike the attention mask
that defines computation logic, the bias matrix describes the pairwise relation among tokens, which is
inherently continuous and dense as showcased in Figure 1, making previous sparsity-based speedup
techniques inapplicable. Although FlexAttention [11], benefiting from compiler techniques, a new
feature in PyTorch 2.5 [26], can support general formalizations of bias terms, it still depends on
element-wise operations that are less optimized than matrix multiplications and fails in speeding up
dynamic bias. To date, the fast computation of attention with bias remains a nascent area to explore.

In FlashAttention [10], researchers find that instead of computation FLOPS, the read-write (IO)
overload of GPU high bandwidth memory (HBM) is the actual bottleneck of speed. As the bias matrix
is usually dense, it is really hard to bypass the quadratic IO complexity, where the computation needs
to read the whole bias term from HBM at least once, making its speedup intractable. In this paper,
we notice that the IO challenge that we face here can be recast into the classical compressed sensing
problem [12], whose basic assumption is that the “measurement” (corresponding to IO overload here)
is expensive but the computation (corresponding to the fast on-chip computation) is cheap. This new
perspective offers us valuable theoretical understandings. Specifically, for a dense matrix, the optimal
“measurement” (IO overload) is highly related to the matrix’s rank [6]. This inspires us to dive into
the rank of attention bias and surprisingly find that most of the widely used biases are inherently of
low rank, eventually discovering one flexible way to enable fast computation of attention with bias.

Based on the above understandings, this paper presents FlashBias based on the low-rank compressed
sensing theory. By formalizing commonly used attention biases into the multiplication of two factor
tensors, FlashBias achieves fast and exact computation for many Transformers, covering vision,
language and scientific domains. Going further, we present an approximation method for general bias
formalization with a low-rank neural decomposition technique, which successfully speeds up more
complicated attentions in AlphaFold 3 [1]. Our contributions are summarized as follows:

• Based on an in-depth study of the computation bottleneck of attention with bias, this paper
theoretically proves that for a dense matrix, e.g. dot-product attention weights or various
attention biases, the optimal efficiency in GPU is determined by the rank of the matrix.

• Inspired by theoretical analyses, this paper presents FlashBias based on the low-rank com-
pressed sensing theory, which utilizes exact and SVD decompositions for fast computation
of many widely-used attention biases, and an approximation version for general biases.

• FlashBias can accelerate a family of widely-used backbones without loss of accuracy, which
brings 1.5→ speedup for AlphaFold and over 2→ speedup for vision and language models.

2 Preliminaries

2.1 Attention with Bias

Attention [39] contains queries q ↑ RN→C , keys k ↑ RM→C and values v ↑ RM→C , where N,M
denote the sequence length of queries and keys respectively and C represents the channel of hidden
representations. Conventionally, attention weights are calculated based on the dot-product between
queries and keys. Beyond solely relying on the representation dot-product, useful prior knowledge is
also commonly introduced into the attention mechanism as a bias term to guide learning, which is:

o = softmax(
qk↑
↓
C

+ b)v. (1)

2
, bias

Introduce prior knowledge to
guide attention learning

ALiBi Bias

(a) Attention Mask (b) Attention Bias in Famous Transformers

Spatial Bias Pair Bias

(c) Attention Computation Process

Query, Key, Value, Bias

Parallel Compute on SRAM
GPU SRAM

GPU High Bandwidth Memory (HBM)

Results

Block
Read

Block
Write

19 TB/s
(20 MB)

1.5 TB/s
(40 GB)

Pair Bias

Sparse Dense
Continuous

Inevitable IO complexity for loading the dense bias matrix

A Typical Compressed Sensing Problem

Donoho et al., Compressed sensing. IEEE TransacHons on informaHon theory 2006

Ø Compressed Sensing: “measurement” (storage) is expensive, but the computation is cheap
Ø Attention Computation: IO is slow, but on-chip computation is fast

If we can compress the original data (Bias Matrix), we can reduce the IO complexity.

= xy A x

Measurement Original DataSensing Matrix

A Typical Compressed Sensing Problem

Candès et al., The power of convex relaxation: Near-optimal matrix completion. IEEE Transactions on information theory 2010

= xy A x

Measurement Original DataSensing Matrix

Theorem (from Emmanuel J. Candès and Terence Tao)
For an NxN dense Matrix with rank-R, the smallest measurement is Θ(𝑁𝑅).

Determined by the rank of matrix

Why FlashAttention is Fast? Underlying low rank assumption

Given Sequence len N, Channel dim C, SRAM size S and C=𝛼N, S=𝛽NC

1) FlashA.en1on IO Complexity is Θ 1 + !
"
𝛽 smaller than standard a.en1on

2) Suppose dot-product a.en1on weight 𝐬 = 𝐪𝐤# is of rank R, 𝛼 ≥ $
%

The speedup ra+o of FlashA1en+on ∝ !
"

and ∝ 𝛽. 𝛽 is usually fixed. 𝜶 determines performance.

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

!: N x C

"!: C x M

#: M x C

$: N x C

Attention with
Online SoftMax

!: N x C

"!: C x M

Dot-product
Attention Weight

simplify

Reverse thinking 💡

Query and key are from low-rank
decomposi:on of a;en:on score.

FlashBias: Achieving theoretically optimal complexity

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

(b) FlashBias Computation(a) FlashAttention with Bias

Read Key

Read
Value

Read
Query

Compute on-chip

Read Bias

Inner Loop

O
ut

er
 L

oo
p

!!

""#

#"

$!"

!: N x C

"!: C x M

#: M x C

$: N x C
%: N x M

Attention with
Online SoftMax

Read Key

Read
Value

Read
Query

Compute on-chip

Inner Loop

O
ut

er
 L

oo
p

!!$

""$%

#"

!": N x (R+C)

""!:
(R+C) x M

#: M x C

$: N x C

Attention with
Online SoftMax

Low-rank Decomp
Exact / SVD / Neural

&#((#): N x R

&$ ($ %: R x M

Figure 2: Comparison between FlashAttention and FlashBias. FlashBias utilizes low-rank decompo-
sition to bypass the read of the whole bias matrix, successfully avoiding the quadratic IO overload.

3.1 Rethinking FlashAttention Computation

We begin by analyzing the theoretical basis of FlashAttention’s speedup (without bias or mask) on
dense and continuous attention weights. Our analysis yields that the rank of dense matrices, such
as the dot-product attention weight s = qk→

→ RN↑M and the bias matrix b → RN↑M , inherently
decides the IO cost, which is formally stated as follows. All the proofs can be found in Appendix A.
Theorem 3.1 (FlashAttention computation benefits from low rank). Suppose N = M and let R be
the rank of dot-product attention weight s, C = ωN be the channel dimension with constant ω and
sequence length N , S be the size of SRAM with S = εNC and 1

N ↑ ε ↑ 1. Then, 1) the HBM
access of FlashAttention is !

(
(1 + 1

ω)ε
)

times smaller than the standard attention, and 2) ω ↓
R
N .

As demonstrated in Theorem 3.1, the speedup of FlashAttention is proportional to ε (SRAM size) and
inversely proportional to ω (channel dimension). If we consider the attention weight s as a low-rank
matrix, the optimal speedup of FlashAttention is obtained by reducing the channel dimension to R,
i.e. ω = R

N . The same technique is also used in DeepSeek-v3 [22] as Multi-Head Latent Attention,
which reduces the channel dimension by projecting q,k,v into a small latent space for acceleration.
Theorem 3.2 (Compressed sensing complexity of low-rank dense matrix [6]). Given a N ↔N dense
matrix with rank R, the theoretically optimal compressed tensor is of storage complexity !(NR).

Theorem 3.2 demonstrates that the optimal storage of bias is linearly related to its rank, highlighting
the essentiality of the low-rank property. Further, integrating with prior analyses of HBM access in
exact attention [9], we can derive the IO complexity property of HBM access in attention with bias.
Corollary 3.3 (A “lower bound” for HBM access of attention with bias). Given q → RN↑C ,k,v →

RM↑C , bias b of rank R and SRAM of size S where (C +R) ↑ S ↑ N(C +R), there does not exist
an algorithm to compute exact attention with bias through o

(NM(C2+R2)
S

)
HBM access for all

S → [(C +R), N(C +R)]. Here o(↗) represents the strict asymptotic upper bound.

3.2 FlashBias

Inspired by the above theoretical results, we present FlashBias based on low-rank decomposition
techniques, with novel design to utilize the low-rank property of attention bias to reduce HBM access.

Overall design As shown in Figure 2, instead of block-wise reading bias, FlashBias replaces the
quadratic bias matrix b → RN↑M as two factor tensors. Specifically, considering a bias matrix
calculated by b = f(xq,xk), where xq → RN↑C→

,xk → RM↑C→
represent the source information

for generating the bias, which is set as spatial position of each pixel in Swin Transformer [24] and the
representation of protein residues in AlphaFold [1], if there exist factor functions ϑq,ϑk satisfying:

f(xq,xk) = ϑq(xq)ϑk(xk)
→, ϑq,ϑk : RC→

↘ RR. (2)

The computation of attention with bias can be equivalently formalized as follows:

o = softmax(
qk→
≃
C

+ b)v = softmax
(
[
q|
≃
Cϑq(xq)

]
[k|ϑk(xk)]

→
≃
C

)
v, (3)

4

1) Low-rank Decomp

2) Fast computation

FlashBias: Three concrete instantiations for decomposition

1) Exact Decomp: for some representa1ve bias, such as ALiBi or spa1al distance bias.

2) SVD Decomp: when the bias term is learnable model parameters

3) Neural Decomp: when the bias term is data dependent

Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ωq,ωk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Domain Bias / Model Type

Language ALiBi [29] (a)

Vision Swin Trans. [24] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [→|→] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ωq(xq)ωk(xk)→, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ωq,ωk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [29] in language models). Given xq = [1, · · · , N],xk = [1, · · · ,M], the
ALiBi bias is calculated as f(xq,i,xk,j) = i↑ j, which can be directly decomposed into a low-rank
formalization by defining ωq(xq,i) = [1, i] and ωk(xk,j) = [↑j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [42], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ↓ RN↑3

record the 3D spatial positions of N computation points, where xq,i ↓ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ↔xq,i ↑ xk,j↔

2
2, it can be exactly decomposed as:

ωq(xq,i) = [x2
q,i,0, 1,↑2xq,i,0,x

2
q,i,1, 1,↑2xq,i,1,x

2
q,i,2, 1,↑2xq,i,2],

ωk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [24] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ↗M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ω̂q,ω1 , ω̂k,ω2 : RC→

↘ RR to approximate factor functions ωq and ωk,
which is supervised by the following objective function:

min
ω1,ω2

L(xq,xk) = ↔ω̂q,ω1(xq)ω̂k,ω2(xk)
→
↑ f(xq,xk)↔

2
2. (5)

Here ε1, ε2 are learnable parameters, which can be optimized by fine-tuning ε1, ε2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ω̂q,ω1 , ω̂k,ω2 have
been well optimized, they can be directly applied to all future inference.

5

Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ωq,ωk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Domain Bias / Model Type

Language ALiBi [29] (a)

Vision Swin Trans. [24] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [→|→] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ωq(xq)ωk(xk)→, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ωq,ωk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [29] in language models). Given xq = [1, · · · , N],xk = [1, · · · ,M], the
ALiBi bias is calculated as f(xq,i,xk,j) = i↑ j, which can be directly decomposed into a low-rank
formalization by defining ωq(xq,i) = [1, i] and ωk(xk,j) = [↑j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [42], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ↓ RN↑3

record the 3D spatial positions of N computation points, where xq,i ↓ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ↔xq,i ↑ xk,j↔

2
2, it can be exactly decomposed as:

ωq(xq,i) = [x2
q,i,0, 1,↑2xq,i,0,x

2
q,i,1, 1,↑2xq,i,1,x

2
q,i,2, 1,↑2xq,i,2],

ωk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [24] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ↗M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ω̂q,ω1 , ω̂k,ω2 : RC→

↘ RR to approximate factor functions ωq and ωk,
which is supervised by the following objective function:

min
ω1,ω2

L(xq,xk) = ↔ω̂q,ω1(xq)ω̂k,ω2(xk)
→
↑ f(xq,xk)↔

2
2. (5)

Here ε1, ε2 are learnable parameters, which can be optimized by fine-tuning ε1, ε2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ω̂q,ω1 , ω̂k,ω2 have
been well optimized, they can be directly applied to all future inference.

5

,

Relative information

Usage and Comparison

>> from flash_bias_triton import flash_bias_func

>> output = flash_bias_func(q, k, v, q_bias, k_bias, mask=None, causal=False, softmax_scale=1/math.sqrt(headdim))

Surpass FlashAttention, PyTorch SDPA, xFormers (bs2-head4-headdim32-noncausal-rank8)
hWps://github.com/Dao-AILab/flash-aWenHon

hWps://github.com/facebookresearch/xformers
hWps://docs.pytorch.org/docs/stable/generated/torch.nn.funcHonal.scaled_dot_product_aWenHon.html

Test Phase Train Phase

2x 1.3x

https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/Dao-AILab/flash-attention
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://github.com/facebookresearch/xformers
https://docs.pytorch.org/docs/stable/generated/torch.nn.functional.scaled_dot_product_attention.html

Case 1: GPT-2 with ALiBi Bias (Exact Decomp, Causal Mask, R=2)

Train PhaseTest Phase

batchsize1-head50-headdim32-causal-rank2

Case 2: Swin Transformer V2 (SVD Decomp, R=16)speedup attention with bias. Further, compared to the official implementation, FlashBias can reduce
60% running time and 27% memory cost, which is valuable for real-time development.

Table 4: Experiment of SwinV2-B on ImageNet-1K. #Time
and #Mem correspond to inference efficiency on A100 per
batch. Offline calculation of SVD for all biases takes 4.79s.

Method Acc@1 Acc@5 Time(s) Mem(MB)

Official Code 87.144% 98.232% 0.473 12829
Pure FlashAttention 9.376% 19.234% 0.180 3957

FlashAttention with Bias 87.142% 98.232% 0.230 11448
FlexAttention [11] 87.142% 98.232% 2.885 25986
INT8 PTQ 86.46% Around 22% speed up

FlashBias (Ours) 87.186% 98.220% 0.190 9429

More importantly, FlashBias will not
affect the performance, where the top-
5 accuracy drops less than 0.02% and
the fluctuation of the top-1 accuracy
(+0.042%) is within the standard de-
viation. In particular, even using well-
established quantization techniques
will still cause a 0.64% top-1 accu-
racy drop for 22% speedup according
to the FasterTransformer document3.
This comparison demonstrates that the
low-rank property is a principal basis
for fast computation of attention.

Also, FlexAttention seriously degenerates in SwinV2-B. This is because, unlike experiments in
Section 4.1, Swin Transformer’s bias matrices are different in value and shape among different layers,
which requires recompilation each time. This issue has also been mentioned by FlexAttention’s author
as “If you are adding a [B, H, N, N] bias tensor, then you honestly shouldn’t be using FlexAttention”4.

4.4 Scientific Deep Models

In addition to language and vision tasks, scientific problems usually involve rich domain-specific prior
knowledge; thereby, attention bias also widely exists in scientific Transformers. Here we evaluate
FlashBias in two representative models: Transformer-based PDE solvers [42] and AlphaFold 3 [1].

Transformer-based PDE solvers Attention mechanism has been proven equivalent to a Monte-
Carlo approximation of the integral operator [21], justifying its theoretical foundation for solving
partial differential equations (PDEs). However, in processing complex geometries, the attention
mechanism may fall in perceiving the 3D space, encouraging the utilization of spatial distance prior.
Here we follow the driving car simulation task in [42], whose input is the position of computation
mesh points and output is the physics quantities on these points. We test FlashBias on an 8-layer
Transformer solver with a 3D distance bias described in Example 3.5. Each layer contains attention
with 128 hidden dimensions and 8 heads, as well as a feedforward network with 256 hidden channels.

To approximate the adaptive mesh in numerical methods [35], we include a token-wise learnable
weight ωi for the 3D distance bias in each head of every layer, i.e. f(xq,i,xk,j) = ωi→xq,i ↑ xk,j→

2
2.

Unlike bias discussed in ALiBi [29] or SwinV2 [24], the learnable weights require the training process
to record the gradient of the bias matrix, posing a challenging efficiency issue in backpropagation.

Table 5: Experiments of Transformer PDE solvers. The efficiency metrics are recorded under a batch
size of 1 in the format of #Mem (GB) / #Time (s/100iters). Accuracy comparisons are in Appendix F.

Method (Learnable Bias)
Training Phase Inference Phase

8192 16384 32186 8192 16384 32186

FlashAttention 12.8 / 15.4 OOM OOM 4.54 / 5.46 15.3 / 21.2 OOM
FlexAttention Not supported in current version 21.9 / 184.0 OOM OOM

FlashBias (Ours) 1.46 / 4.54 2.02 / 14.7 2.97 / 51.1 0.98 / 1.22 1.03 / 3.48 1.13 / 12.7

Results FlashBias is the only method that can support training of the Transformer solver on 32186
points (Table 5), which also presents a significant memory and running time advantage compared
with other methods. Notably, FlashAttention and FlexAttention cannot support learnable bias training
well, as they need to record dense gradient matrices, further highlighting the practicality of FlashBias.

AlphaFold 3 for protein folding As a significant progress of AI for science, AlphaFold 3 [1]
employs an elaborate architecture. Specifically, its core design, Pairformer, contains 144 attention

3FasterTransformer released by NVIDIA.
4Discussion about FlexAttention with dynamic bias matrix.

9

SV
D

D
ec

om
p

O
rig

in
al

Bi
as

 M
at

rix

Inference time: 0.473s → 0.190s (60% reduction)

GPU memory: 12829MB → 9429MB (27% reduction)

2x speedup without any loss of accuracy

Case 3: AlphaFold 3 (Neural Decomp, R=96)
Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss → pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [26].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ω̂q,ω1 , ω̂k,ω2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix D for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.

10

Inference time: 26.85s → 18.19s (32% reduction)

1.5x speedup without any loss of accuracy

hWps://github.com/bytedance/Protenix

https://github.com/bytedance/Protenix
https://github.com/bytedance/Protenix

Case 3: AlphaFold 3 (Neural Decomp, R=96)
Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss → pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [26].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ω̂q,ω1 , ω̂k,ω2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix D for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.

10

hWps://github.com/bytedance/Protenix

Table 6: Experiment of AlphaFold 3. The left part illustrates folding examples. Note that AlphaFold 3
is based on a diffusion model; thereby, slight differences are normal. The right table’s efficiency is
tested on the one-time inference of Pairformer with 1218 protein residue tokens (PDB ID: 7wux).

PDB ID: 7wux PDB ID: 7r6r
Official Prediction Speedup with FlashBias

PDB ID: 7pzb

Method
Test Set PDB ID 7wux

pLLDDT Loss → pTM ↑ Time(s) Mem(GB)

Open-sourced Code 3.3724 0.9500 26.85 13.62
FlashAttention w/o Bias 4.3669 0.1713 8.27 12.89
FlashAttention w/ Bias 3.3724 0.9500 20.39 13.62
FlashBias (Ours) 3.3758 0.9498 18.19 13.62

blocks, all of which contain the bias term of pair representations. Thus, its speedup is highly related
to the fast computation of attention with bias. Since Alphafold 3 is not officially open-sourced, we
follow a public high-quality reproduction, Proteinix [8], which is implemented in PyTorch [26].

After a detailed analysis of AlphaFold 3, we find that its efficiency bottleneck is triangle self-attention,
which involves the bias matrix projected from intermediate pair representations, making it vary
among different samples, layers and heads. To approximate this complex bias, we employ the neural
decomposition version of FlashBias, whose inputs xq,xk are set as the combination of pair and
single protein representation. We fine-tune neural basis functions for 10,000 iterations on the PDB
dataset. Since we only need to optimize the newly added parameters in ω̂q,ω1 , ω̂k,ω2 , this process only
takes about 10 hours on a single A100 40GB GPU, then you can infer a new protein with FlashBias.
For comparison, the full training process of AlphaFold 3 will take about 7 days on 128 A100 GPUs.

Results Table 6 shows that, compared to the public code, FlashBias can reduce the running time by
32%. In addition, removing bias (w/o bias) will significantly improve the efficiency (26.85s vs. 8.27s)
but will seriously damage performance. This observation highlights the essentiality of accelerating
attention with bias. Despite FlashBias being based on neural decomposition, it will not affect the final
performance, whose metric fluctuation is within the standard deviation. Beyond inference, FlashBias
can also be a promising tool for training speedup (see Appendix D for details).

Neural decomposition visualization To give a clear illustration of neural decomposition, we
also plot the original pair representation bias and FlashBias approximated bias in Figure 7. Neural
decomposition can give a relatively accurate estimation of the bias matrix, which performs well in
capturing the “texture” of the original bias. In addition, it is also observed that neural decomposition is
not completely perfect in reconstructing the diagonal weights. Despite this deficiency, FlashBias still
maintains the original accuracy of AlphaFold 3. This may benefit from the dot-product self-attention
and residual connection, which can give a robust and dominating weight for relation modeling.

PDB ID: 7r6r PDB ID: 7pzb

N
eu

ra
l

D
ec

om
p

O
rig

in
al

Bi
as

 M
at

rix

R=206 R=49 R=80 R=227R=130 R=45 R=83 R=125

Figure 7: Comparison between neural decomposed factor tensors’ multiplication and original bias.
Biases of 7r6r (245 residues) and 7pzb (600 residues) in the first layer of Pairformer are plotted,
which contains 4 heads. We also mark the rank value that can maintain 99% energy of original biases.

5 Conclusions

This paper focuses on the fast computation of attention with bias, which is an essential extension of the
attention mechanism and is widely used in language, vision and scientific domains. After an in-depth
analysis of FlashAttention, we notice that the optimal efficiency depends on the low-rank property of
the attention weight. This further inspires us to present FlashBias based on the low-rank compressed
sensing theory, where we also present three practical methods for low-rank decomposition of attention
bias, achieving theoretically favorable efficiency. Experimentally, FlashBias can seamlessly support
the fast computation of a wide range of famous Transformers without loss of accuracy.

10

https://github.com/bytedance/Protenix
https://github.com/bytedance/Protenix

Case 4: Pangu-Weather (SVD Decomp, R=56)

https://github.com/zhaoshan2/pangu-pytorch

B Speedup of Pangu-Weather [4]

Pangu-Weather [4] is a significant step in adopting Transformers for global weather forecasting.
Specifically, its backbone is a 3D Swin Transformer with a hierarchical structure, which contains two
different scales. Its speedup is similar to our experiments in Section 4.3. As listed in Table 1, we
consider to speedup this model based on the SVD decomposition version of FlashBias.

Setups Since Pangu-Weather is based on the 3D window (with shape 2 → 6 → 12), its bias for
relative position encoding is slightly different from Swin Transformer. Especially, its bias is in the
shape of #num→#heads→144→ 144 for each block, where #num represents the number of 3D
windows. According to meteorological knowledge, different longitudes share the same bias.

Implementations Since Pangu-Weather does not provide accessible model weights or code, our
experiments are based on an open-sourced PyTorch reproduction5. All the other implementations are
the same as the descriptions in Section 4.3. Notably, we find that only relative position biases in the
fine scale are low-rank. Thus, we only apply FlashBias to the four 3D Swin layers in the fine scale,
where we set R = 56 to maintain 99% energy of the original bias matrix. As discussed in Section 4.3,
FlexAttention fails in processing such dynamic bias; we didn’t compare with it in this task. Since the
whole ERA5 data is over 150TB, we only test the model based on 100 samples in 2024.

Table 7: Experiments of Pangu-Weather [4] on ERA5 [15]. Output
difference measures of the L2 distance between the outputs of
FlashBias and the official code, averaged from 100 different inputs.
This difference is calculated on the z-score normalized [27] model
outputs to balance diverse meteorological factors.

Method Output Difference Time(s/100iters) Mem(MB)

Open-sourced Code - 98.022 26552
FlashAttention w/o bias 0.0128 74.089 12141
FlashAttention w/ bias - 79.649 13186

FlashBias (Ours) 0.0003 76.779 12222

Results As presented in Ta-
ble 7, FlashBias can also speedup
Pangu-Weather. Compared to the
open-sourced code, FlashBias re-
duces over 20% running time and
over 50% GPU memory usage.
However, due to the limited se-
quence length (N = 144 in this
case), the running time speedup
is not as considerable as SwinV2.
Just as plotted in Figure 3 and 4,
FlashBias will bring more signif-
icant speedup in running time and GPU memory for long sequences. As improving the spatial
resolution of forecasting is a golden problem in weather prediction [43], we believe that FlashBias
has a strong advantage in supporting future research on higher-resolution reanalysis data.

C More Results of ALiBi Bias [29]

As we stated in the main text, the released FlashAttention supports an ALiBi_slopes feature, where
only ALiBi slope values in the shape of #heads are loaded from HBM, and the specific bias in
the shape of Block_q→Block_k is created in just-in-time (JIT) compilation6. Here Block_q and
Block_q denote the tilling size in FlashAttention [10, 9].

Table 8: Experiments on GPT-2 size model with ALiBi bias. Here
we experiment with FlashAttention’s ALiBi_slopes feature and
FlashBias with JIT speedup. The running time for 100 iterations at
both training and inference phases when N = 2048 are recorded.

Method Training Phase (s) Test Phase (s)

FlashAttention w/o bias 119.3 38.77
FlashAttention with ALiBi_slopes 119.8 38.98

FlashBias with decomposition in JIT 119.8 38.98

Note that ALiBi is quite a
simple bias, and the imple-
mentation of FlashAttention’s
ALiBi_slopes feature takes
advantage of that the bias val-
ues can be created in JIT.
In the following experiments,
we also utilized this property
of ALiBi in FlashBias, where
we generate the decomposed
factor tensors of shape Block_q→2 and Block_k→2 in JIT, instead of directly creating the
Block_q→Block_k matrix. As presented in Table 8, since the difference between FlashAttention
and FlashBias is in JIT, these two implementations are almost at the same speed.

5https://github.com/zhaoshan2/pangu-pytorch
6Implementation of ALiBi_slopes feature in FlashAttention

22

Inference time: 98s → 77s (21% reduction)

GPU memory: 26552MB → 12222MB (54% reduction)

speedup without any loss of accuracy

https://github.com/zhaoshan2/pangu-pytorch
https://github.com/zhaoshan2/pangu-pytorch
https://github.com/zhaoshan2/pangu-pytorch
https://github.com/zhaoshan2/pangu-pytorch
https://github.com/zhaoshan2/pangu-pytorch
https://github.com/zhaoshan2/pangu-pytorch

Case 5: Neural Solver with Spatial Dist Bias (Exact Decomp, R=5)

hWps://github.com/thuml/Neural-Solver-Library

Table 1: The computation of FlashBias for widely-used attention biases, which includes three different
types: (a) Exact decomposition by finding exact ωq,ωk, (b) SVD decomposition for cases using
model parameter as bias, (c) Neural decomposition for using model representation as dynamic bias.

Domain Bias / Model Type

Language ALiBi [29] (a)

Vision Swin Trans. [24] (b)

Spatial Distance (a)
Science Pangu-Weather [4] (b)

AlphaFold [1] (c)

where [→|→] denotes the concatenation operation along the channel dimension. Notably, this design
significantly reduces the storage cost for the attention bias from O(NM) to O ((N +M)R). Al-
though its design will require recalculating the bias weight, this computation is just a simple matrix
multiplication of ωq(xq)ωk(xk)→, an operation that has been extremely optimized on modern GPUs.

Such a simple design is broadly applicable to a wide range of variants for attention with bias. In
practice, we implement it through three concrete instantiations for ωq,ωk, as shown in Table 1.

Exact decomposition We find that some well-established attention biases can be directly decom-
posed into factor functions, enabling fast and exact computation. Here are representative cases.
Example 3.4 (ALiBi [29] in language models). Given xq = [1, · · · , N],xk = [1, · · · ,M], the
ALiBi bias is calculated as f(xq,i,xk,j) = i↑ j, which can be directly decomposed into a low-rank
formalization by defining ωq(xq,i) = [1, i] and ωk(xk,j) = [↑j, 1], corresponding to the case R = 2.
The original ALiBi also involves a causal mask, while we only focus on the bias term here.
Example 3.5 (Spatial distance in scientific problems). Transformers has been used as surrogate
models for PDE solving [42], especially for aerodynamic simulation. It is critical to introduce spatial
distance to guide attention learning among massive computational points. Let xq = xk ↓ RN↑3

record the 3D spatial positions of N computation points, where xq,i ↓ R3 is the position of i-th point.
For the spatial distance f(xq,i,xk,j) = ↔xq,i ↑ xk,j↔

2
2, it can be exactly decomposed as:

ωq(xq,i) = [x2
q,i,0, 1,↑2xq,i,0,x

2
q,i,1, 1,↑2xq,i,1,x

2
q,i,2, 1,↑2xq,i,2],

ωk(xk,j) = [1,x2
k,j,0,xk,j,0, 1,x

2
k,j,1,xk,j,1, 1,x

2
k,j,2,xk,j,2].

(4)

SVD decomposition Some models such as Swin Transformer [24] and Pangu-Weather [4] adopt
the learnable model parameters for relative position encoding. Specifically, each bias term in their
model is an N ↗M matrix of model parameters. As this type of bias is fixed once the model has
been well trained, it is convenient to conduct Singular Value Decomposition (SVD) [20] for low-rank
decomposition of these parameters. In practice, we precompute SVD once offline, incurring negligible
runtime overhead. The resulting decomposed factor tensors can then be utilized to accelerate the
subsequent inference process, thanks to their low-rank nature.

Neural decomposition The two mechanisms discussed above apply to static bias terms. Beyond
these, some models introduce more complex or dynamically generated biases. For example, in
AlphaFold [1], the bias term is projected from the intermediate pair representations. In this case, its
low-rank decomposition cannot be explicitly or exactly derived. Also, due to the data-dependent
property, SVD decomposition needs to be conducted for bias at every inference. To accelerate
these complex biases, we present a neural approximation version of FlashBias, which employs two
lightweight neural networks ω̂q,ω1 , ω̂k,ω2 : RC→

↘ RR to approximate factor functions ωq and ωk,
which is supervised by the following objective function:

min
ω1,ω2

L(xq,xk) = ↔ω̂q,ω1(xq)ω̂k,ω2(xk)
→
↑ f(xq,xk)↔

2
2. (5)

Here ε1, ε2 are learnable parameters, which can be optimized by fine-tuning ε1, ε2 on the training set.
Note that FlashBias attempts to completely replace the original bias term, a design fundamentally
different from LoRA [16] which learns an additive term to the pretrained model parameters. Similar
to the SVD decomposition version, once these two lightweight neural networks ω̂q,ω1 , ω̂k,ω2 have
been well optimized, they can be directly applied to all future inference.

5

Based on spherical coordinates, we can further reduce R to 5.

speedup attention with bias. Further, compared to the official implementation, FlashBias can reduce
60% running time and 27% memory cost, which is valuable for real-time development.

Table 4: Experiment of SwinV2-B on ImageNet-1K. #Time
and #Mem correspond to inference efficiency on A100 per
batch. Offline calculation of SVD for all biases takes 4.79s.

Method Acc@1 Acc@5 Time(s) Mem(MB)

Official Code 87.144% 98.232% 0.473 12829
Pure FlashAttention 9.376% 19.234% 0.180 3957

FlashAttention with Bias 87.142% 98.232% 0.230 11448
FlexAttention [11] 87.142% 98.232% 2.885 25986
INT8 PTQ 86.46% Around 22% speed up

FlashBias (Ours) 87.186% 98.220% 0.190 9429

More importantly, FlashBias will not
affect the performance, where the top-
5 accuracy drops less than 0.02% and
the fluctuation of the top-1 accuracy
(+0.042%) is within the standard de-
viation. In particular, even using well-
established quantization techniques
will still cause a 0.64% top-1 accu-
racy drop for 22% speedup according
to the FasterTransformer document3.
This comparison demonstrates that the
low-rank property is a principal basis
for fast computation of attention.

Also, FlexAttention seriously degenerates in SwinV2-B. This is because, unlike experiments in
Section 4.1, Swin Transformer’s bias matrices are different in value and shape among different layers,
which requires recompilation each time. This issue has also been mentioned by FlexAttention’s author
as “If you are adding a [B, H, N, N] bias tensor, then you honestly shouldn’t be using FlexAttention”4.

4.4 Scientific Deep Models

In addition to language and vision tasks, scientific problems usually involve rich domain-specific prior
knowledge; thereby, attention bias also widely exists in scientific Transformers. Here we evaluate
FlashBias in two representative models: Transformer-based PDE solvers [42] and AlphaFold 3 [1].

Transformer-based PDE solvers Attention mechanism has been proven equivalent to a Monte-
Carlo approximation of the integral operator [21], justifying its theoretical foundation for solving
partial differential equations (PDEs). However, in processing complex geometries, the attention
mechanism may fall in perceiving the 3D space, encouraging the utilization of spatial distance prior.
Here we follow the driving car simulation task in [42], whose input is the position of computation
mesh points and output is the physics quantities on these points. We test FlashBias on an 8-layer
Transformer solver with a 3D distance bias described in Example 3.5. Each layer contains attention
with 128 hidden dimensions and 8 heads, as well as a feedforward network with 256 hidden channels.

To approximate the adaptive mesh in numerical methods [35], we include a token-wise learnable
weight ωi for the 3D distance bias in each head of every layer, i.e. f(xq,i,xk,j) = ωi→xq,i ↑ xk,j→

2
2.

Unlike bias discussed in ALiBi [29] or SwinV2 [24], the learnable weights require the training process
to record the gradient of the bias matrix, posing a challenging efficiency issue in backpropagation.

Table 5: Experiments of Transformer PDE solvers. The efficiency metrics are recorded under a batch
size of 1 in the format of #Mem (GB) / #Time (s/100iters). Accuracy comparisons are in Appendix F.

Method (Learnable Bias)
Training Phase Inference Phase

8192 16384 32186 8192 16384 32186

FlashAttention 12.8 / 15.4 OOM OOM 4.54 / 5.46 15.3 / 21.2 OOM
FlexAttention Not supported in current version 21.9 / 184.0 OOM OOM

FlashBias (Ours) 1.46 / 4.54 2.02 / 14.7 2.97 / 51.1 0.98 / 1.22 1.03 / 3.48 1.13 / 12.7

Results FlashBias is the only method that can support training of the Transformer solver on 32186
points (Table 5), which also presents a significant memory and running time advantage compared
with other methods. Notably, FlashAttention and FlexAttention cannot support learnable bias training
well, as they need to record dense gradient matrices, further highlighting the practicality of FlashBias.

AlphaFold 3 for protein folding As a significant progress of AI for science, AlphaFold 3 [1]
employs an elaborate architecture. Specifically, its core design, Pairformer, contains 144 attention

3FasterTransformer released by NVIDIA.
4Discussion about FlexAttention with dynamic bias matrix.

9

speedup attention with bias. Further, compared to the official implementation, FlashBias can reduce
60% running time and 27% memory cost, which is valuable for real-time development.

Table 4: Experiment of SwinV2-B on ImageNet-1K. #Time
and #Mem correspond to inference efficiency on A100 per
batch. Offline calculation of SVD for all biases takes 4.79s.

Method Acc@1 Acc@5 Time(s) Mem(MB)

Official Code 87.144% 98.232% 0.473 12829
Pure FlashAttention 9.376% 19.234% 0.180 3957

FlashAttention with Bias 87.142% 98.232% 0.230 11448
FlexAttention [11] 87.142% 98.232% 2.885 25986
INT8 PTQ 86.46% Around 22% speed up

FlashBias (Ours) 87.186% 98.220% 0.190 9429

More importantly, FlashBias will not
affect the performance, where the top-
5 accuracy drops less than 0.02% and
the fluctuation of the top-1 accuracy
(+0.042%) is within the standard de-
viation. In particular, even using well-
established quantization techniques
will still cause a 0.64% top-1 accu-
racy drop for 22% speedup according
to the FasterTransformer document3.
This comparison demonstrates that the
low-rank property is a principal basis
for fast computation of attention.

Also, FlexAttention seriously degenerates in SwinV2-B. This is because, unlike experiments in
Section 4.1, Swin Transformer’s bias matrices are different in value and shape among different layers,
which requires recompilation each time. This issue has also been mentioned by FlexAttention’s author
as “If you are adding a [B, H, N, N] bias tensor, then you honestly shouldn’t be using FlexAttention”4.

4.4 Scientific Deep Models

In addition to language and vision tasks, scientific problems usually involve rich domain-specific prior
knowledge; thereby, attention bias also widely exists in scientific Transformers. Here we evaluate
FlashBias in two representative models: Transformer-based PDE solvers [42] and AlphaFold 3 [1].

Transformer-based PDE solvers Attention mechanism has been proven equivalent to a Monte-
Carlo approximation of the integral operator [21], justifying its theoretical foundation for solving
partial differential equations (PDEs). However, in processing complex geometries, the attention
mechanism may fall in perceiving the 3D space, encouraging the utilization of spatial distance prior.
Here we follow the driving car simulation task in [42], whose input is the position of computation
mesh points and output is the physics quantities on these points. We test FlashBias on an 8-layer
Transformer solver with a 3D distance bias described in Example 3.5. Each layer contains attention
with 128 hidden dimensions and 8 heads, as well as a feedforward network with 256 hidden channels.

To approximate the adaptive mesh in numerical methods [35], we include a token-wise learnable
weight ωi for the 3D distance bias in each head of every layer, i.e. f(xq,i,xk,j) = ωi→xq,i ↑ xk,j→

2
2.

Unlike bias discussed in ALiBi [29] or SwinV2 [24], the learnable weights require the training process
to record the gradient of the bias matrix, posing a challenging efficiency issue in backpropagation.

Table 5: Experiments of Transformer PDE solvers. The efficiency metrics are recorded under a batch
size of 1 in the format of #Mem (GB) / #Time (s/100iters). Accuracy comparisons are in Appendix F.

Method (Learnable Bias)
Training Phase Inference Phase

8192 16384 32186 8192 16384 32186

FlashAttention 12.8 / 15.4 OOM OOM 4.54 / 5.46 15.3 / 21.2 OOM
FlexAttention Not supported in current version 21.9 / 184.0 OOM OOM

FlashBias (Ours) 1.46 / 4.54 2.02 / 14.7 2.97 / 51.1 0.98 / 1.22 1.03 / 3.48 1.13 / 12.7

Results FlashBias is the only method that can support training of the Transformer solver on 32186
points (Table 5), which also presents a significant memory and running time advantage compared
with other methods. Notably, FlashAttention and FlexAttention cannot support learnable bias training
well, as they need to record dense gradient matrices, further highlighting the practicality of FlashBias.

AlphaFold 3 for protein folding As a significant progress of AI for science, AlphaFold 3 [1]
employs an elaborate architecture. Specifically, its core design, Pairformer, contains 144 attention

3FasterTransformer released by NVIDIA.
4Discussion about FlexAttention with dynamic bias matrix.

9

Adaptive distance bias for better geometry information encoding:

https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library

Generaliza3on to Diverse Bias (Neural Decomp, R=32)
SV

D
D

ec
om

po
si

tio
n

O
rig

in
al

Bi
as

 M
at

rix

Figure 9: Comparison between SVD decomposed factor tensors’ multiplication and original bias.

F More Results in Transformer PDE Solver

In Table 5, we only present the efficiency comparison. Further, to demonstrate the performance
benefits brought by spatial distance bias, we also include the performance metric in Table 11. With
spatial distance bias, the error of the estimated drag coefficient can be reduced by 65.3%, which is a
significant progress in industrial design. This further confirms the importance of attention with bias.

Table 11: Performance comparison among attention w/o bias and w/ bias in PDE solving. The relative
L2 of surface pressure and surrounding velocity is recorded. We also calculate the drag coefficient
CD based on model-predicted physics fields, whose relative L2 w.r.t. ground truth is also included.

Method (Sequence Length N = 32186) Surface Pressure Error Surrounding Velocity Error CD Error

Pure attention without spatial distance bias 0.0838 0.0278 0.0173

FlashAttention with spatial distance bias OOM OOM OOM
FlashBias with spatial distance bias 0.0706 0.0201 0.0113
Relative Promotion 15.7% 27.7% 65.3%

G Generalization for Diverse Biases

In FlashBias, we present a neural decomposition version to fit complex and dynamic biases, which
has been tested in speeding up AlphaFold 3 in Section 4.4. To further demonstrate the expressive
capability of neural decomposition, in this section, we will train neural factor functions ω̂q,ω1 , ω̂k,ω2
to approximate more diverse biases, which can be meaningful for scientific tasks.

Neural Decomp Neural DecompGravity Bias Spherical Bias

(a) Gravity Bias (b) Spherical Bias

Figure 10: Adopting neural decomposition techniques in FlashBias for more diverse biases.

Gravity bias Many phenomena are inherently governed by underlying physical forces, where
gravity is one of the basic factors. Accurately approximating the gravity force is essential for the

24

modeling of planetary motion [32] or electronic simulation [13]. Thus, we consider introducing the
gravity bias into the attention mechanism. Specifically, this bias can be formalized as follows:

f(xq,i,xk,j) =
1

→xq,i ↑ xk,j→
2
2

, (13)

where xq,i,xk,j denotes the spatial positions of the i-th and j-th objects. We train ω̂q,ω1 , ω̂k,ω2
based on randomly sampled points from [0, 1] ↓ [0, 1] in the 2D space. Since the bias is inversely
proportional to spatial distance, we further add 0.01 to the diagonal bias for numerical stability.

Spherical distance When analyzing atmospheric circulation, it is intuitive to consider it as the
dynamics on a spherical surface. Therefore, previous research has attempted to introduce spherical
Fourier analysis into the model design [5]. Another alternative approach is to add a spherical distance
bias to attention in Transformer-based models. Thus, we also consider the spherical distance bias:

f(xq,i,xk,j) = 2 · arcsin

(√
sin2(

xq,i,0 ↑ xk,j,0

2
) + cosxq,i,0 cosxk,j,0 sin

2(
xq,i,1 ↑ xk,j,1

2
)

)
,

(14)
where xq,i,xk,j ↔ R2 records the latitude and longitude of the i-th and j-th position respectively.
Similarly, we also train ω̂q,ω1 , ω̂k,ω2 based on randomly sampled points in [↑ε,ε]↓ [0, 2ε].

For the biases mentioned above, we set R = 32 and ω̂q,ω1 , ω̂k,ω2 as three linear layers with in-between
tanh activation functions. Then we optimize these model parameters with the Adam [19] optimizer for
10,000 iterations, which will take less than 30 seconds on an A100 GPU. As presented in Figure 10,
neural decomposition performs very well in these two biases, especially for the spherical bias. As for
gravity bias, since the numerical instability of the inverse proportion function, it is more difficult for
optimization, while our method still captures the locality of the bias matrix.

The above experiments further testify the capability of FlashBias in accelerating broader scenarios.

H Implementation Details

As a supplement to the main text, we include more details of implementation here. All the experiments
are conducted based on PyTorch 2.5.0 [26] and Triton 3.0.0 [37] on a single A100 GPU with 144
CPU cores. All efficiency metrics are averaged from 1,000 iterations. For example, some metrics are
recorded as s/100iters or s/10iters, where we divide the running time of 1,000 iterations by 10 or 100,
respectively. In our experiments, all the algorithms’ efficiency performance is quite stable.

ALiBi in Large Language Model Since the experiments for ALiBi speedup are based on directly
replacing the ALiBi bias with the exact decomposition, FlashBias’s output results are completely
equal to the original version. The training efficiency is tested under the Adam [19] optimizer.

Relative position encoding in Swin Transformer This part of the experiments strictly follows the
official code in Swin Transformer V2 [23]. As illustrated in Figure 8, we only apply FlashBias to the
last 8 layers. It is also possible to apply FlashBias to part of low-rank heads in each layer. However,
this will require some preprocessing steps, such as rearranging the heads and model parameters to
ensure that all low-rank heads are memory continuous. Considering the implementation simplification,
we eventually adopt the current design, which only speeds up the final layers.

Spatial distance bias in PDE solver In this experiment, we follow the code base provided here7,
which includes the application of Transformers for the car design task. Specifically, the input contains
the position of the pre-defined computation mesh and the output is the pressure and air velocity on
these computation mesh points. In this task, we also adopt the exact decomposition for computation.
The training phase is also based on the Adam [19] optimizer with a batch size of 1.

Pair representation bias in AlphaFold 3 In AlphaFold 3 [1], we adopt the neural decomposition
version. This version involves the training of newly added neural layers, whose finetuning configura-
tion is listed in Table 12. Here we find that optimizing the factor functions for 10,000 iterations can
obtain a nearly converged version. This may be because the factor functions are token-wise, which

7https://github.com/thuml/Neural-Solver-Library

25

modeling of planetary motion [32] or electronic simulation [13]. Thus, we consider introducing the
gravity bias into the attention mechanism. Specifically, this bias can be formalized as follows:

f(xq,i,xk,j) =
1

→xq,i ↑ xk,j→
2
2

, (13)

where xq,i,xk,j denotes the spatial positions of the i-th and j-th objects. We train ω̂q,ω1 , ω̂k,ω2
based on randomly sampled points from [0, 1] ↓ [0, 1] in the 2D space. Since the bias is inversely
proportional to spatial distance, we further add 0.01 to the diagonal bias for numerical stability.

Spherical distance When analyzing atmospheric circulation, it is intuitive to consider it as the
dynamics on a spherical surface. Therefore, previous research has attempted to introduce spherical
Fourier analysis into the model design [5]. Another alternative approach is to add a spherical distance
bias to attention in Transformer-based models. Thus, we also consider the spherical distance bias:

f(xq,i,xk,j) = 2 · arcsin

(√
sin2(

xq,i,0 ↑ xk,j,0

2
) + cosxq,i,0 cosxk,j,0 sin

2(
xq,i,1 ↑ xk,j,1

2
)

)
,

(14)
where xq,i,xk,j ↔ R2 records the latitude and longitude of the i-th and j-th position respectively.
Similarly, we also train ω̂q,ω1 , ω̂k,ω2 based on randomly sampled points in [↑ε,ε]↓ [0, 2ε].

For the biases mentioned above, we set R = 32 and ω̂q,ω1 , ω̂k,ω2 as three linear layers with in-between
tanh activation functions. Then we optimize these model parameters with the Adam [19] optimizer for
10,000 iterations, which will take less than 30 seconds on an A100 GPU. As presented in Figure 10,
neural decomposition performs very well in these two biases, especially for the spherical bias. As for
gravity bias, since the numerical instability of the inverse proportion function, it is more difficult for
optimization, while our method still captures the locality of the bias matrix.

The above experiments further testify the capability of FlashBias in accelerating broader scenarios.

H Implementation Details

As a supplement to the main text, we include more details of implementation here. All the experiments
are conducted based on PyTorch 2.5.0 [26] and Triton 3.0.0 [37] on a single A100 GPU with 144
CPU cores. All efficiency metrics are averaged from 1,000 iterations. For example, some metrics are
recorded as s/100iters or s/10iters, where we divide the running time of 1,000 iterations by 10 or 100,
respectively. In our experiments, all the algorithms’ efficiency performance is quite stable.

ALiBi in Large Language Model Since the experiments for ALiBi speedup are based on directly
replacing the ALiBi bias with the exact decomposition, FlashBias’s output results are completely
equal to the original version. The training efficiency is tested under the Adam [19] optimizer.

Relative position encoding in Swin Transformer This part of the experiments strictly follows the
official code in Swin Transformer V2 [23]. As illustrated in Figure 8, we only apply FlashBias to the
last 8 layers. It is also possible to apply FlashBias to part of low-rank heads in each layer. However,
this will require some preprocessing steps, such as rearranging the heads and model parameters to
ensure that all low-rank heads are memory continuous. Considering the implementation simplification,
we eventually adopt the current design, which only speeds up the final layers.

Spatial distance bias in PDE solver In this experiment, we follow the code base provided here7,
which includes the application of Transformers for the car design task. Specifically, the input contains
the position of the pre-defined computation mesh and the output is the pressure and air velocity on
these computation mesh points. In this task, we also adopt the exact decomposition for computation.
The training phase is also based on the Adam [19] optimizer with a batch size of 1.

Pair representation bias in AlphaFold 3 In AlphaFold 3 [1], we adopt the neural decomposition
version. This version involves the training of newly added neural layers, whose finetuning configura-
tion is listed in Table 12. Here we find that optimizing the factor functions for 10,000 iterations can
obtain a nearly converged version. This may be because the factor functions are token-wise, which

7https://github.com/thuml/Neural-Solver-Library

25

Gravity Bias:

Spherical Bias:

Extension to Multiplicative Bias

, bias

Introduce prior knowledge to
guide a>en2on learning

Table 12: Configuration for finetuning factor functions ω̂q,ω1 , ω̂k,ω2 .

Part Configuration

Input xq,xk
Sum of row and column in pair representation, with shape of N → 128

Single representation at model beginning with shape of N → 449

Output ω̂q,ω1(xq), ω̂q,ω1(xk) Decomposed factor tensors with shape of N →#heads→96 (#heads = 4)

Model ω̂q,ω1 , ω̂k,ω2

Input Dim: 577; Hidden Dim: 256; Output Dim: 384 (= 4→ 96)
Three linear layers with in-between tanh activation function

Initial learning rate: 0.001; Optimizer: Adam;
Training Learning rate decay: every 50 iterations, reduce to the origin’s 0.95

Overall steps: 10,000 iterations

Dataset Train set: “weightedPDB_before2109_wopb_nometalc_0925”
Test set: “recentPDB_1536_sample384_0925”

means at every iteration, the model will receive N (sequence length) samples for training. To sum up,
these layers have been optimized with around 3,840,000 “samples” after 10,000 iterations. Also, to
reduce the cumulative error, we only apply FlashBias to the first 16 Pairformer blocks.

I Extension to Multiplicative Bias

In this section, we will discuss the extension to multiplicative bias in the following formalization:

o = softmax(
qk→
→
C

↑ b)v, (15)

where b ↓ RN↑N represents the multiplicative bias and C denotes the number of hidden channels.
↑ denotes the Hadamard product, namely the element-wise multiplication.

Rotary position embedding (RoPE) [36] As mentioned in Section 2.1, RoPE is a special multi-
plicative bias. Specifically, its pre-softmax attention weight is defined as follows:

amn = Re[

C/2↓1∑

i=0

q̄ik̄ie
i(m↓n)ωi], (16)

where amn represents the pre-softmax weight between m-th query and n-th key. q̄i ↓ R1↑2

represents the 2i and 2i+ 1-th element of the m-th query representation. By comparing the above
Eq. (15) and Eq. (16), we can obtain the following observations:

(i) RoPE does not follow the common formalization of multiplicative bias. As formalized in Eq. (16),
RoPE does not directly multiply a bias weight to each attention value, which also involves a detailed
reweighing along the channel dimension. Thus, we prefer to consider RoPE as a unique technique,
not a “general formalization” for multiplicative bias.

(ii) RoPE is already FlashAttention-friendly and does not need further modifications to fit the
computation of FlashAttention. According to Eq. (34) in its official paper [36], RoPE can be
accomplished by multiplying the rotary tensors with q and k before computing qk→. With this
design, it does not need to load an additional N ↔ N bias matrix; thereby, it can be seamlessly
integrated with FlashAttention. Thus, we do not think it needs further modifications to fit the
computation flow of FlashAttention. That is also why we do not experiment with RoPE in this paper.

General multiplicative bias Here, we will demonstrate that the low-rank decomposition proposed
in FlashBias can be extended to multiplicative bias defined in Eq. (15).

Specifically, suppose that b ↓ RN↑N can be decomposed as the multiplication of two rank-R tensors:
ωq and ωk ↓ RN↑R. We can rewrite the calculation of attention with multiplicative bias as follows:

o = softmax(
qk→
→
C

↑ b)v = softmax(
q↔k↔→
→
C

)v,

where q↔ = [q↑ ωq,1, · · · ,q↑ ωq,R] ↓ RN↑CR, k↔ = [k↑ ωk,1, · · · ,k↑ ωk,R] ↓ RN↑CR.
(17)

26

Table 12: Configuration for finetuning factor functions ω̂q,ω1 , ω̂k,ω2 .

Part Configuration

Input xq,xk
Sum of row and column in pair representation, with shape of N → 128

Single representation at model beginning with shape of N → 449

Output ω̂q,ω1(xq), ω̂q,ω1(xk) Decomposed factor tensors with shape of N →#heads→96 (#heads = 4)

Model ω̂q,ω1 , ω̂k,ω2

Input Dim: 577; Hidden Dim: 256; Output Dim: 384 (= 4→ 96)
Three linear layers with in-between tanh activation function

Initial learning rate: 0.001; Optimizer: Adam;
Training Learning rate decay: every 50 iterations, reduce to the origin’s 0.95

Overall steps: 10,000 iterations

Dataset Train set: “weightedPDB_before2109_wopb_nometalc_0925”
Test set: “recentPDB_1536_sample384_0925”

means at every iteration, the model will receive N (sequence length) samples for training. To sum up,
these layers have been optimized with around 3,840,000 “samples” after 10,000 iterations. Also, to
reduce the cumulative error, we only apply FlashBias to the first 16 Pairformer blocks.

I Extension to Multiplicative Bias

In this section, we will discuss the extension to multiplicative bias in the following formalization:

o = softmax(
qk→
→
C

↑ b)v, (15)

where b ↓ RN↑N represents the multiplicative bias and C denotes the number of hidden channels.
↑ denotes the Hadamard product, namely the element-wise multiplication.

Rotary position embedding (RoPE) [36] As mentioned in Section 2.1, RoPE is a special multi-
plicative bias. Specifically, its pre-softmax attention weight is defined as follows:

amn = Re[

C/2↓1∑

i=0

q̄ik̄ie
i(m↓n)ωi], (16)

where amn represents the pre-softmax weight between m-th query and n-th key. q̄i ↓ R1↑2

represents the 2i and 2i+ 1-th element of the m-th query representation. By comparing the above
Eq. (15) and Eq. (16), we can obtain the following observations:

(i) RoPE does not follow the common formalization of multiplicative bias. As formalized in Eq. (16),
RoPE does not directly multiply a bias weight to each attention value, which also involves a detailed
reweighing along the channel dimension. Thus, we prefer to consider RoPE as a unique technique,
not a “general formalization” for multiplicative bias.

(ii) RoPE is already FlashAttention-friendly and does not need further modifications to fit the
computation of FlashAttention. According to Eq. (34) in its official paper [36], RoPE can be
accomplished by multiplying the rotary tensors with q and k before computing qk→. With this
design, it does not need to load an additional N ↔ N bias matrix; thereby, it can be seamlessly
integrated with FlashAttention. Thus, we do not think it needs further modifications to fit the
computation flow of FlashAttention. That is also why we do not experiment with RoPE in this paper.

General multiplicative bias Here, we will demonstrate that the low-rank decomposition proposed
in FlashBias can be extended to multiplicative bias defined in Eq. (15).

Specifically, suppose that b ↓ RN↑N can be decomposed as the multiplication of two rank-R tensors:
ωq and ωk ↓ RN↑R. We can rewrite the calculation of attention with multiplicative bias as follows:

o = softmax(
qk→
→
C

↑ b)v = softmax(
q↔k↔→
→
C

)v,

where q↔ = [q↑ ωq,1, · · · ,q↑ ωq,R] ↓ RN↑CR, k↔ = [k↑ ωk,1, · · · ,k↑ ωk,R] ↓ RN↑CR.
(17)

26

FlashBias’ extension to mul1plica1ve bias:

Example:

Here ωq,i,ωk,i → RN→1 represents the i-th channel of the decomposed factor tensors ωq and ωk,
whose channel dimension will be broadcasted C times before multiply to q or k. Operation [· · · , · · ·]
denotes the concatenation along the channel dimension. Besides, the above computation also requires
repeating the original q and k along the channel dimension for R times and multiplying the factor
tensors for each repeat. It is easy to verify the correctness of the above reformalization.
Example I.1. Given the multiplicative bias bij = cos(i↑j), which can also be viewed as a simplified
version of RoPE (Eq. (16)), b can be decomposed into two factor tensors with R = 2:

ωq(xq,i) = [cos(i), sin(i)] → R1→2, ωk(xk,j) = [cos(j), sin(j)] → R1→2. (18)
Based on this decomposition, we can use the above Eq. (17) for speedup, where the whole N ↓N
bias matrix is transformed into the reweighted repeat of q and k.
Corollary I.2 (Efficiency analysis). FlashBias’s extension to attention with multiplicative bias
(Eq. (15)) can reduce the storage complexity of vanilla FlashAttention when R ↔

√
S
C2 + 1.

Proof. According to [9], the HBM access of FlashAttention with bias is !(NMC2

S +NM), it is easy

to drive that the HBM access of Eq. (17) is !(NMC2R2

S). Thus, when R ↔

√
S
C2 + 1, we have:

!(
NMC2R2

S
) ↔ !(

NMC2(S
C2 + 1)

S
) = !(

NMC2

S
+NM). (19)

Example I.3 (Design practice). Given a regular setting: C = 64 and S =100KB, FlashBias can
achieve acceleration for attention with multiplicative bias if there exists a decomposition with R ↔ 27.

Since the multiplicative bias is not as common as the additive bias and RoPE has already been well
implemented, we would like to leave more explorations of multiplicative bias as our future work.

J Limitations

As mentioned in the main text, FlashBias’s speedup is based on the low-rank nature of attention bias.
Although the low-rank biases are observed in many well-established backbones, if the bias matrix is
not of low rank, FlashBias will have to trade off between efficiency and final performance.

About this limitation, one possible solution is to introduce an additional sparsity matrix as a sup-
plement to low-rank decomposition, which is a well-known matrix approximation technique [7].
Specifically, given the attention bias matrix b, this method formalizes the decomposition process as a
convex relaxation problem, which can be formalized as follows:

r̂+ t̂ = argmin
r,t

↗r↗↑ + ε↗t↗1,

s.t. r+ t = b,
(20)

where ↗↗↑ represents the nuclear norm and r is expected to be low-rank and s is optimized to be
sparse. Afterwards, the low-rank matrix r can be sped up through FlashBias, and we can adopt the
same technique as attention mask speedup [34] for accelerating the sparse component t. Further, this
technique can also make up for the current shortage of FlashBias in approximating the diagonal value
(Figure 7), where we can decompose the bias into the sum of a low-rank and a diagonal matrix.

Since we mainly focus on the low-rank property of attention bias in this paper and it will not affect
the final performance in our experiments, we would like to leave this as our future work.

K Broader Impacts

This paper presents FlashBias as a practical method to enable fast computation of attention with
bias, which shows a significant efficiency advantage over FlashAttention and FlexAttention [11].
FlashBias also enables 1.5↓ speedup for Pairformer in AlphaFold 3 [1] and over 2↓ speedup in
vision and language models without performance drop. These efficiency benefits can facilitate future
fine-tuning or development of Transformers in real-world applications. Also, this paper considers a
new low-rank compressed sensing perspective in fast attention computation, which can be inspiring
for future research. Since we purely focus on the algorithm design for fast computation of attention
with bias, there are no potential negative social impacts or ethical risks.

27

Here ωq,i,ωk,i → RN→1 represents the i-th channel of the decomposed factor tensors ωq and ωk,
whose channel dimension will be broadcasted C times before multiply to q or k. Operation [· · · , · · ·]
denotes the concatenation along the channel dimension. Besides, the above computation also requires
repeating the original q and k along the channel dimension for R times and multiplying the factor
tensors for each repeat. It is easy to verify the correctness of the above reformalization.
Example I.1. Given the multiplicative bias bij = cos(i↑j), which can also be viewed as a simplified
version of RoPE (Eq. (16)), b can be decomposed into two factor tensors with R = 2:

ωq(xq,i) = [cos(i), sin(i)] → R1→2, ωk(xk,j) = [cos(j), sin(j)] → R1→2. (18)
Based on this decomposition, we can use the above Eq. (17) for speedup, where the whole N ↓N
bias matrix is transformed into the reweighted repeat of q and k.
Corollary I.2 (Efficiency analysis). FlashBias’s extension to attention with multiplicative bias
(Eq. (15)) can reduce the storage complexity of vanilla FlashAttention when R ↔

√
S
C2 + 1.

Proof. According to [9], the HBM access of FlashAttention with bias is !(NMC2

S +NM), it is easy

to drive that the HBM access of Eq. (17) is !(NMC2R2

S). Thus, when R ↔

√
S
C2 + 1, we have:

!(
NMC2R2

S
) ↔ !(

NMC2(S
C2 + 1)

S
) = !(

NMC2

S
+NM). (19)

Example I.3 (Design practice). Given a regular setting: C = 64 and S =100KB, FlashBias can
achieve acceleration for attention with multiplicative bias if there exists a decomposition with R ↔ 27.

Since the multiplicative bias is not as common as the additive bias and RoPE has already been well
implemented, we would like to leave more explorations of multiplicative bias as our future work.

J Limitations

As mentioned in the main text, FlashBias’s speedup is based on the low-rank nature of attention bias.
Although the low-rank biases are observed in many well-established backbones, if the bias matrix is
not of low rank, FlashBias will have to trade off between efficiency and final performance.

About this limitation, one possible solution is to introduce an additional sparsity matrix as a sup-
plement to low-rank decomposition, which is a well-known matrix approximation technique [7].
Specifically, given the attention bias matrix b, this method formalizes the decomposition process as a
convex relaxation problem, which can be formalized as follows:

r̂+ t̂ = argmin
r,t

↗r↗↑ + ε↗t↗1,

s.t. r+ t = b,
(20)

where ↗↗↑ represents the nuclear norm and r is expected to be low-rank and s is optimized to be
sparse. Afterwards, the low-rank matrix r can be sped up through FlashBias, and we can adopt the
same technique as attention mask speedup [34] for accelerating the sparse component t. Further, this
technique can also make up for the current shortage of FlashBias in approximating the diagonal value
(Figure 7), where we can decompose the bias into the sum of a low-rank and a diagonal matrix.

Since we mainly focus on the low-rank property of attention bias in this paper and it will not affect
the final performance in our experiments, we would like to leave this as our future work.

K Broader Impacts

This paper presents FlashBias as a practical method to enable fast computation of attention with
bias, which shows a significant efficiency advantage over FlashAttention and FlexAttention [11].
FlashBias also enables 1.5↓ speedup for Pairformer in AlphaFold 3 [1] and over 2↓ speedup in
vision and language models without performance drop. These efficiency benefits can facilitate future
fine-tuning or development of Transformers in real-world applications. Also, this paper considers a
new low-rank compressed sensing perspective in fast attention computation, which can be inspiring
for future research. Since we purely focus on the algorithm design for fast computation of attention
with bias, there are no potential negative social impacts or ethical risks.

27

Open Source

Code is available at

https://github.com/thuml/FlashBias

https://github.com/thuml/FlashBias

Thank You!
wuhaixu98@gmail.com

Code Link: https://github.com/thuml/FlashBias
1.5x Speedup for Pairformer in AlphaFold 3; 2x Speedup for Swin Transformer v2.

Try FlashBias!

https://github.com/thuml/FlashBias

