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Navier-Stokes Equation for Fluid Dynamics

Partial Differential Equations

Turbulence Atmospheric circulation Stress

Inner Stress
of Solid Materials



Partial Differential Equations

It is really hard (usually impossible) to obtain the analytic solution of PDEs

Ø Birch and Swinnerton-Dyer conjecture

Ø Hodge conjecture
Ø Navier–Stokes existence and smoothness

Ø P versus NP problem

Ø Riemann hypothesis

Ø Yang–Mills existence and mass gap

Ø Poincaré conjecture (Solved)

Millennium Prize Problems

Turbulence Atmospheric circulation Stress



Neural PDE Solvers

Physics-Informed 

Neural Networks
Neural Operators

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)



Physics-Informed Neural Networks

Enforcing outputs and gradients of 

deep models to satisfy target equations

Karniadakis, G. et al. Physics-informed machine learning, Nature Review Physics 3, 422–440 (2021)



Physics-Informed Neural Networks
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Point Optimization (optimizing models on scattered points)

Insufficient to obtain an accurate solution for the whole domain



Related Works: High-order regularization

ü Add the high-order constraints of PDEs as regularization terms to loss function

✗ Calculating high-order derivatives can be extremely time-consuming and unstable

Yu, Jeremy et al. Gradient-enhanced physics-informed neural networks for forward and inverse PDE problems, 
Computer Methods in Applied Mechanics and Engineering, 2022

Differential function



Related Works: Variational formulation

v 

v 

Select test functions

Integrals by parts

ü High-order derivative operation in loss function is transferred to test functions

✗ Integral on Ω is still hard to compute, requires massive quadrature points

✗ test function selection requires extra manual effort and M times computation costs

Kharazmi, Ehsan et al. Variational Physics-Informed Neural Networks For Solving Partial Differential Equations.
ArXiv abs/1912.00873, 2019



Region Optimization V.S. Point Optimization

Point Optimization: 

Region Optimization: 



Theoretical Analysis
Ø Generalization Error in Expectation

Ø Basic Assumption



Theoretical Analysis: Generalization Bound

Ø Canonical Point Optimization: Ω! = 0

Cannot benefit from introducing “region”

Ø Globally sampling points: Ω! = Ω

Equivalent to directly optimizing the loss defined on Ω, generalization error will be reduced to zero.

Cannot be satisfied in practice, which requires the precise calculation of the integral of 𝛀



Theoretical Analysis: High-order PDE Constraints

Introducing “region” can implicitly help training PINNs 

with high-order constraints.



Practical Algorithm

① Monte Carlo Approximation

② Trust Region Calibration



Part 1: Monte Carlo approximation

Ø Approximate the region optimization gradient by Monte Carlo approximation

Ø This sampling-based design is also equivalent to a high-order loss function

Important Note: This design is tailored to PINN loss, 

where we can precisely calculate loss at any sampled point.



Part 1: Monte Carlo approximation

Ø Approximate the region optimization gradient by Monte Carlo approximation



Part 2: Trust Region Calibration

Ø A larger region size 𝑟: better generalization but will bring larger gradient estimation error.

Gradient variance within a region.Region 𝑥 + Ω!
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Recall Generalization error:



Part 2: Trust Region Calibration

Adjust region size according to the gradient 

variance among successive iterations.

ü Similar ideas are widely used in deep learning optimizers, such as Adam and AdaGrad, which adopt 

multi-iteration statistics as the momentum of gradient descent.



Part 2: Trust Region Calibration

ü The gradient of each iteration can be effectively obtained by retrieving the computation graph. 

RoPINN has no extra gradient or backpropagation calculation w.r.t. point optimization.

Adjust region size according to the gradient 

variance among successive iterations.



Part 2: Trust Region Calibration



Theoretical Analysis

Ø Canonical point optimization (Ω! = 0) and globally sampling points (Ω! = Ω) are fixed special cases.

RoPINN can adaptively balance optimization and generalization during training.



Intuitive Understanding

𝑥 + Ω!!
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Point optimization: calculate gradient on the 

fixed collocation point in all iterations

RoPINN: Approximate the region gradient by accumulating gradients from multiple iterations
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Experiments

Ø Five base models: PINN, FLS, QRes, PINNsFormer, KAN

Ø 19 different PDE solving tasks: 1D-Reaction, 1D-Wave, Convection and PINNacle



Main Results

Ø Two typical baselines: 

gPINN (high-order regularization) 
vPINN (variational formalization)

ü RoPINN consistently boost all five 
PINN base models in all 19 PDEs.

ü RoPINN helps mitigate the “PINN 

failure modes” (see results of 1D-
Reaction and Convection).



Main Results

RoPINN can be integrated seamlessly with other strategies without extra gradient 

calculation, which verifies its orthogonal contribution and favorable efficiency.

Other two PINN training strategies: 

Ø NTK (loss-reweighting)

Ø RAR (data-sampling) 



Algorithm Analysis: Region Size

ü Adaptively find the “balance point”: Even though we initialize the region size as distinct values, RoPINN

will progressively adjust the trust region size to similar values during training.
ü Affect convergence: If r is initialized as a value closer to the balance point, the training will converge 

faster. Too large a region size will decrease the convergence speed due to the optimization noise.



Algorithm Analysis: Sampling Points

Sampling more points in each region will bring a lower gradient estimation error, 

which will lead to larger region size, better convergence and final performance.



Algorithm Analysis: Efficiency

The benefits brought by more sampling points will saturate around 10 points.

Our default setting is just sampling 1 point, which can keep the similar efficiency as point optimization.



Algorithm Analysis: Ablations

Without trust region calibration, RoPINN (only region sampling) can already boost the performance.

Trust region calibration can make the performance better and more stable.



Algorithm Analysis: Loss Landscape

“PINN failure modes” is not caused by limited model capacity but by hard-to-optimize loss landscape.

Empowered by RoPINN, the loss landscape of PINN is significantly smoothed.

Krishnapriyan, Aditi S. et al. Characterizing possible failure modes in physics-informed neural networks.
Neural Information Processing Systems, 2021.



More Showcases



Open Source

Code is available at https://github.com/thuml/RoPINN

https://github.com/thuml/RoPINN
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