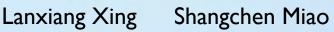


DeepLag: Discovering Deep Lagrangian Dynamics for Intuitive Fluid Prediction

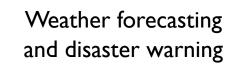
Qilong Ma, Haixu Wu, Lanxiang Xing, Shangchen Miao, Mingsheng Long[⊠]

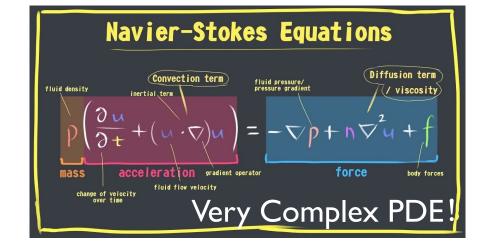
School of Software, BNRist, Tsinghua University, China {mql22,wuhx23,xlx22,msc21}@mails.tsinghua.edu.cn,mingsheng@tsinghua.edu.cn



Qilong Ma

Haixu Wu




I.I FLUID & ITS CHARACTERISTICS

- Fluids: easily deform, with complex dynamics
- Highly related to production and life: Accurate prediction of future fluid evolution is of great significance in various fields

Aerodynamic design optimization

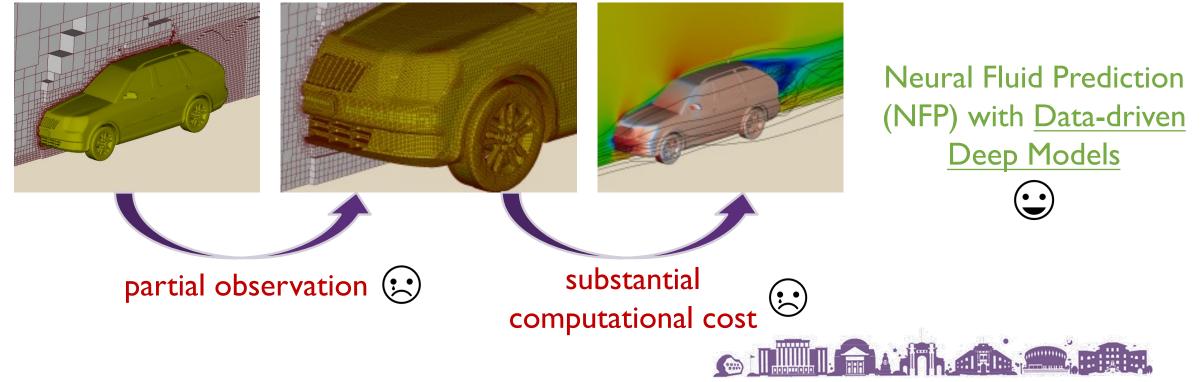
I.2 SIGNIFICANCE: THE DIFFICULTIES OF CFD — PART I

Empirical Models that Simplify Equations

Empirical parameters and assumptions are used to decompose and approximate turbulent characteristics and viscous behaviour of fluids.

Reynolds-averaged Navier Stokes (RANS) equation^[1]

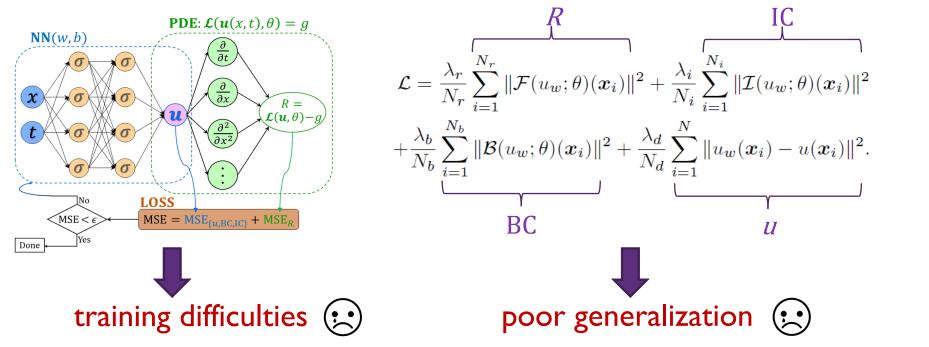
$$\frac{\partial(\rho U_i)}{\partial t} + \frac{\partial(\rho U_i U_j)}{\partial x_j} = -\frac{\partial P}{\partial x_i} + \frac{\partial}{\partial x_j} \left[\mu \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} \right) \boxed{\rho u_i ' u_j '} \right] \implies \text{ information loss } (\mathbf{e})$$
$$-\rho \overline{u_i ' u_j '} = \mu_t \left(\frac{\partial U_i}{\partial x_j} + \frac{\partial U_j}{\partial x_i} - \frac{2}{3} \frac{\partial U_k}{\partial x_k} \delta_{ij} \right) - \frac{2}{3} \rho k \delta_{ij} \implies \text{ depends on the hypothesis } (\mathbf{e})$$



[1] https://www.simscale.com/docs/simulation-setup/global-settings/k-omega-sst/

I.2 SIGNIFICANCE: THE DIFFICULTIES OF CFD — PART 2

Numerical Methods that Simplify Computation


Define geometry and bounds, discretize into mesh by different methods, model physics, iteratively solve numerical equations, and analyse results.

[figs] https://cfd.direct/openfoam/computational-fluid-dynamics/

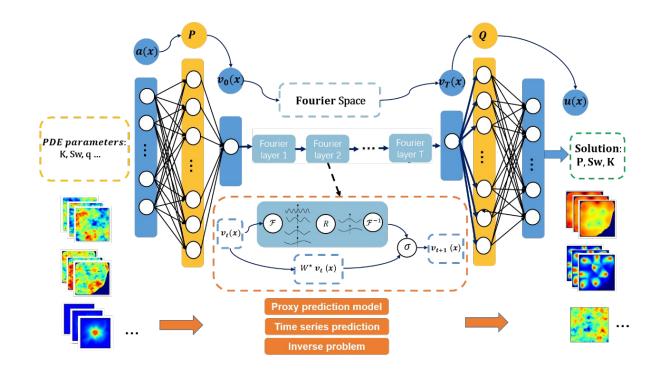
I.3.1 NFP: PHYSICS-INFORMED NEURAL NETWORKS

- Learning the mapping between variables (inputs) and solutions (outputs) of PDEs
- Encoding physical (PDE residuals) and data (prediction error) constraints into the loss function

Raiss, et al. *Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations.* JCP 2019.

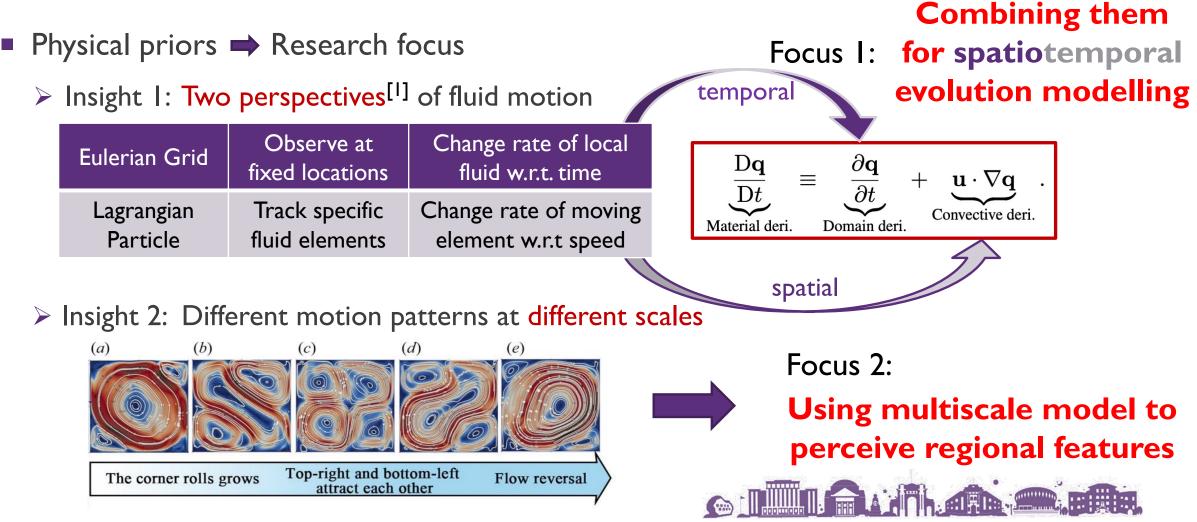
I.3.2 NFP: NEURAL OPERATORS

Learn the mapping between two Banach spaces including function of input field and output field


high computational efficiency

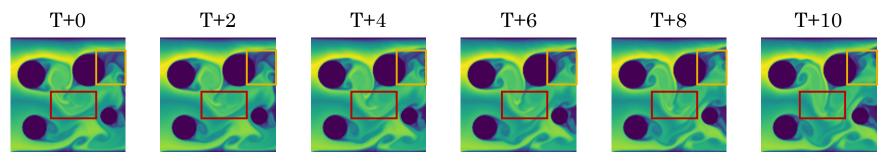
easy to train

strong generalization

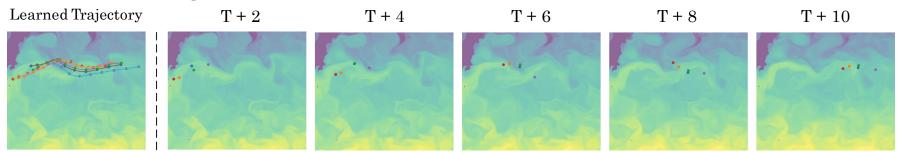

lacks interpretability

Encoding PDE parameters into the latent space then evolve with a theoretical method

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021.


2.1 RECAP: TWO PERSPECTIVES & MULTI SCALES

[1] White, F.M. Fluid Mechanics. McGraw-Hill, 2011.


2.2 TARGET: COMPLEX SCENARIO & HARD PROBLEM

High Reynold number with intricate Boundary conditions

Gas flow around multiple cylinders at high Reynolds number (Reynolds number: 1×10^3)

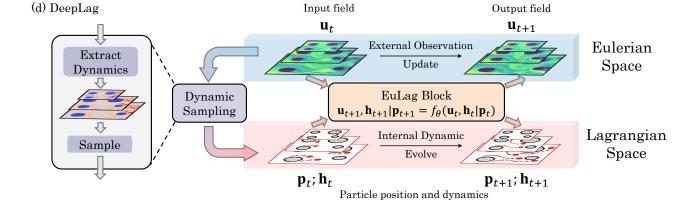
Large-scale and Long-term

Ocean salinity variation^[1] in the Northwest Pacific (375 km \times 625 km, daily)

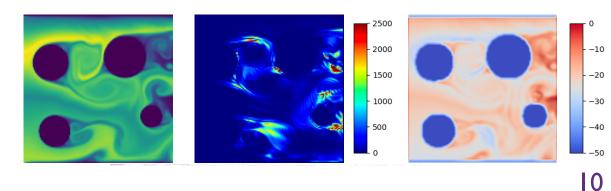
3.1 DEEPLAG: SETUP

- Learn the mapping of functions at adjacent time within the function space on the field
 - ➢ Given a bounded open subset D ⊂ R^d in d-dimensional Euclidean space, the o variables observed at time t, $u_t(x)$: R^d → R^o, can be viewed as a vector-valued function defined on D, forming the Banach space U(D; R^o).
 - > The model \mathcal{F}_{θ} with parameter θ is expected to fit the mapping within \mathcal{U} :

$$\Phi: \boldsymbol{u}_t(\boldsymbol{x}) \to \boldsymbol{u}_{t+1}(\boldsymbol{x})$$


- Multi-step autoregressive joint optimization paradigm
 - ➢ Input recent p steps of observation, predict the next step. Replace old obs. with new pred. $U_t = \{u_{t-p+1}, u_{t-p+2}, \dots, u_t\} \rightarrow u_{t+1}, t = p, p+1, \dots$

> Uncertainty Loss are used to balance each step, enabling joint gradient backpropagation

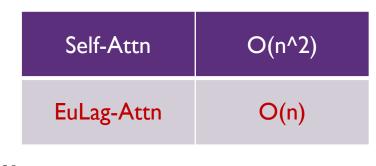

3.2.1 DEEPLAG: MULTI-SCALE ARCHITECTURE

- Inter-scale information exchange
 - Up-sampling and down-sampling to create new fuse neighboring scales
- Feature mapping within scale *l*

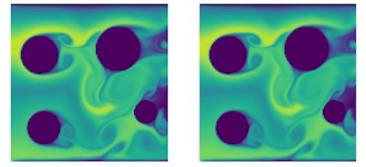
- > The Lagrangian quantity h_t^l and particle position p_t^l aid Eulerian field u_t^l to evolve $u_{t+1}^l, h_{t+1}^l | p_{t+1}^l = f_{\theta}^l(u_t^l, h_t^l | p_t^l) \implies \text{EuLag Block}$
- > Key particles are sampled based on the complexity of local dynamics
 - Input multi-frame vorticity: $\zeta = \frac{\partial v_y}{\partial x} \frac{\partial v_x}{\partial y}$
 - Sampled particles via its pointwise variance:

$$p_t \sim std(\zeta)$$

$\begin{array}{c} \text{Eulerian Evolution} \\ \text{Eulerian Evolution} \\ \text{S.2.2 DEEPLAG: EULAG BLOCK} \\ \begin{array}{c} I^{\text{th}} \text{Scale} \\ I$


Distance-weighted cross-attention

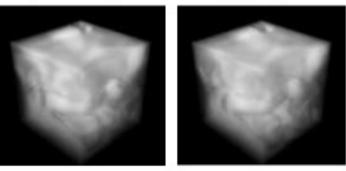
$$\boldsymbol{u}_{t+1} = \boldsymbol{u}_t + \operatorname{softmax}\left(\frac{\boldsymbol{W}_Q \boldsymbol{u}_t (\boldsymbol{W}_K \boldsymbol{h}_t)^T}{\sqrt{C}} \cdot \boldsymbol{M}\right) \boldsymbol{W}_V \boldsymbol{h}_t$$


- Eulerian (E) \rightarrow Lagrangian (L)
 - Global: Distance-weighted cross-attention

$$\boldsymbol{h}_{t+1,\,\text{global}} = \boldsymbol{h}_t + \text{softmax}\left(\frac{\boldsymbol{W'}_Q \boldsymbol{h}_t (\boldsymbol{W'}_K \boldsymbol{u}_t)^T}{\sqrt{C}} \cdot \boldsymbol{M}\right) \boldsymbol{W'}_V \boldsymbol{u}_t$$

- > Local: Eulerian features are interpolated at tracked particle coordinates to obtain $h_{t+1, \text{local}}$
- > MLP is used to fuse global and local results

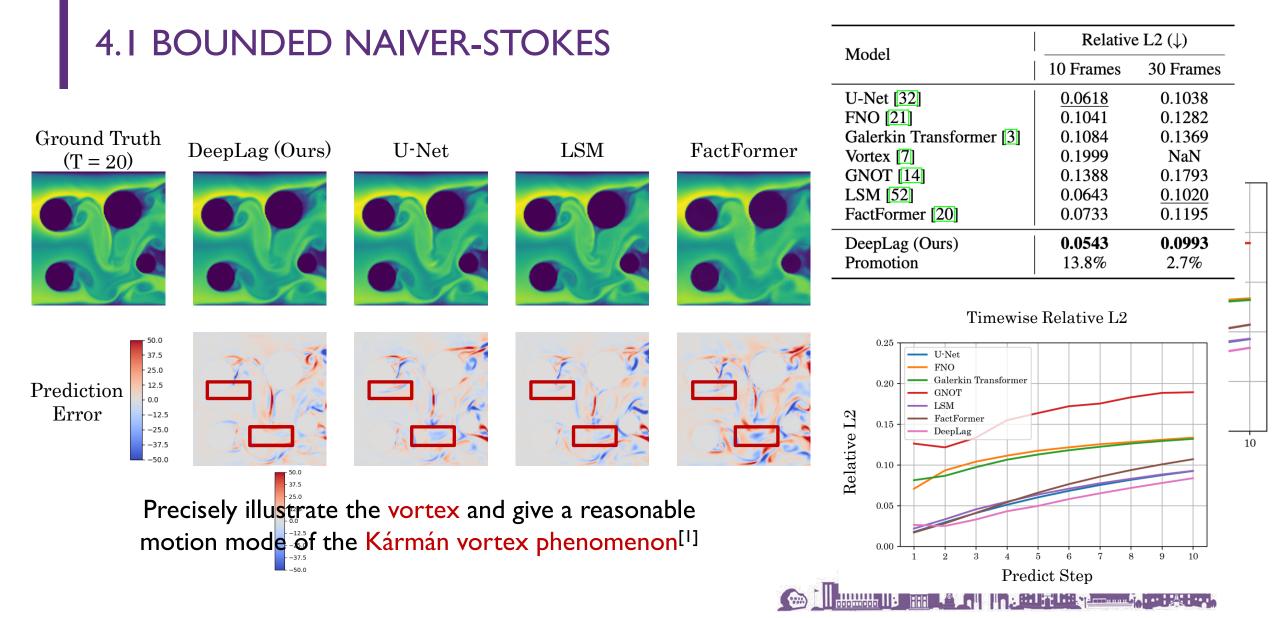
Bounded Naiver-Stokes



Ocean Current

T=0

3D Smoke


4 EXPERIMENTS

Benchmarks

Strong performance on all tasks within the linear complexity

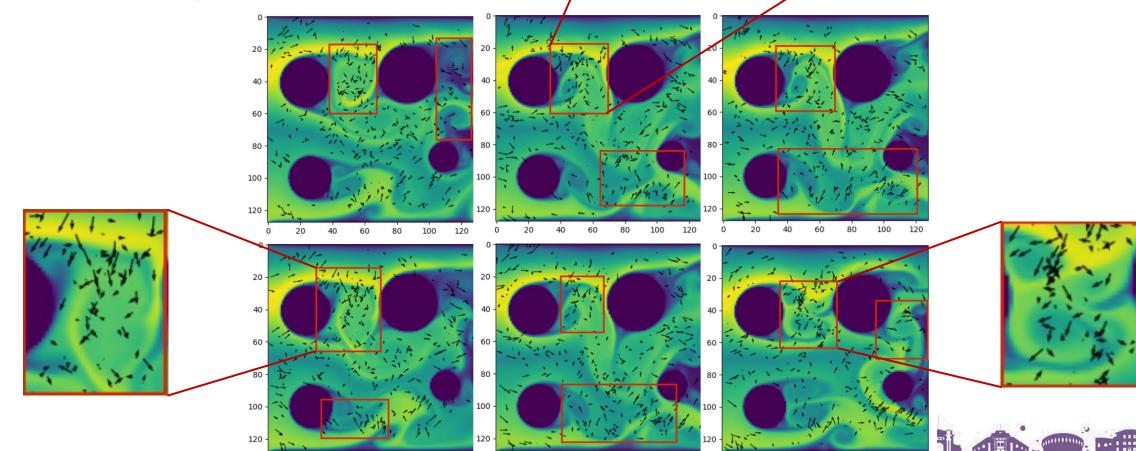
- Bounded Naiver-Stokes
 - 13.8% relative promotion
- Ocean Current
 - 30 days prediction, 12.8% relative promotion
- > 3D Smoke
 - 34.4% relative promotion

Datasets	Туре	#Var	#Dim	#Space	
Bounded N-S Ocean Current 3D Smoke	Simulation Real World Simulation	1	2D 2D 3D	$\begin{array}{c} 128\times128\\ 180\times300\\ 32^3 \end{array}$	

[1] Wille, R. Karman vortex streets. Advances in Applied Mechanics, 1960.

4.1 BOUNDED NAIVER-STOKES

Video of Long-term prediction (100 frames)


Ground Truth	DeepLag (Ours)	FactFormer	FNO	Galerkin Transformer	GNOT	LSM	U-Net

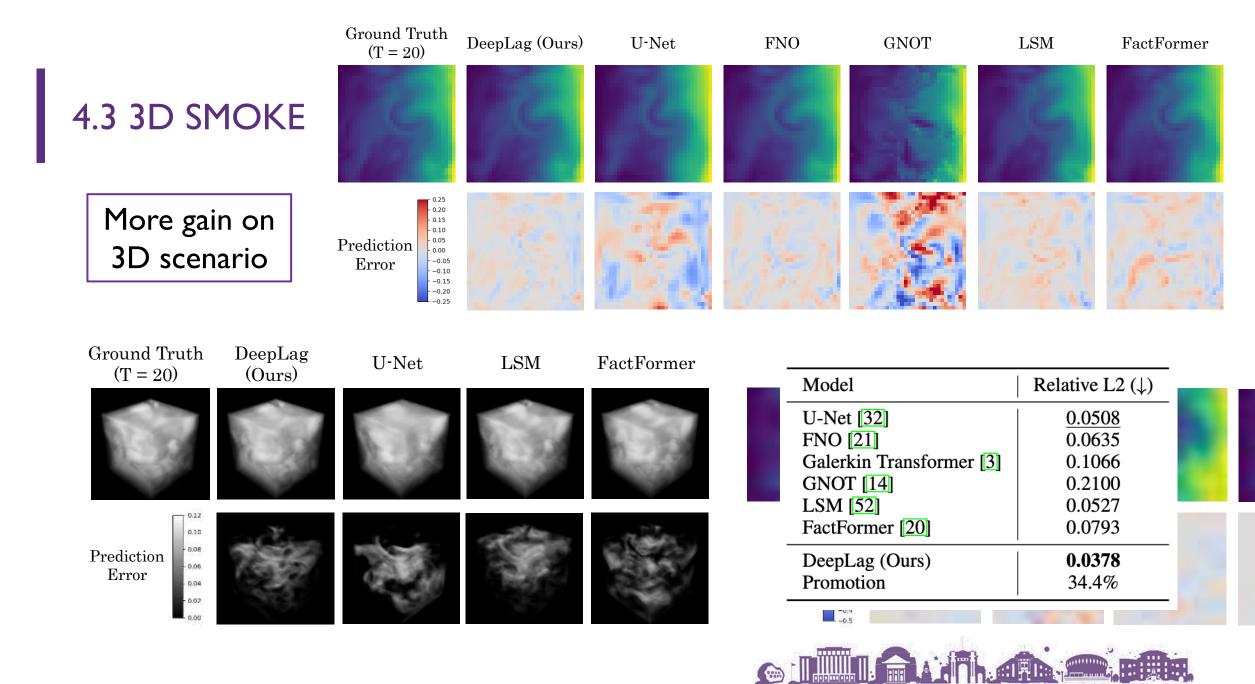
T=0

4.1 BOUNDED NAIVER-STOKES

Learned particle movement

4.2 C	CEAN CUP	RENT			Model	Relative	e L2 (↓)
						10 Days	30 Days
Pe	rforms well in <mark>rea</mark> usually involve			ich	U-Net [32] FNO [21] Galerkin Transformer [3] Vortex [7]	0.0185 0.0246 0.0323 0.9548	0.0297 0.0420 0.0515 NaN
Ground Truth (T = 20)	DeepLag (Ours)	U-Net	LSM	FactFormer	GNOT [14] LSM [52] FactFormer [20]	$ \begin{array}{r} 0.0206 \\ \underline{0.0182} \\ 0.0183 \end{array} $	$\begin{array}{c} 0.0336 \\ \underline{0.0290} \\ 0.0296 \end{array}$
Provides	a clear depiction uroshio pattern ^[1]		atches the sinuo	of upper particles us trajectory of the ocurrent	Estimated Partic (T = 10 ~		ory

[1] Tang, et al. The flow pattern north of Taiwan and the migration of the Kuroshio. Continental Shelf Research, 2021.


4.2 OCEAN CURRENT

Video of Long-term prediction (100 frames)

Ground Truth	DeepLag (Ours)	FactFormer	FNO	Galerkin Transformer	GNOT	LSM	U-Net

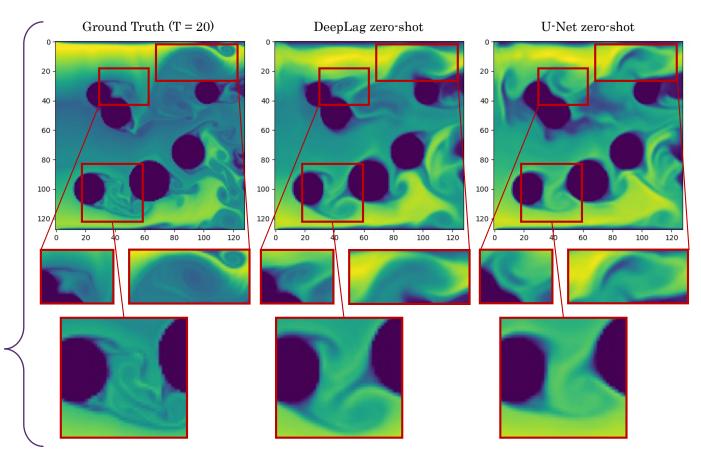
T=0

4.4.1 ABLATIONS

- Module removing
 - > w/o Lagrangian particle tracking, w/o Eularian feature evolving, w/o learnable sampling
- Hyperparameter sensitivity
 - > Adjust number of {tracking particles, spatial scales, latent dimensions}
- Swap the order of EuToLag and LagToEu cross-attention

(a) Module R	emoving	(b) Hyperparameter Sensitivity			(c) Attention Swappin					
Design	Relative L2 (\downarrow)	#Particle	Relative L2 (\downarrow)) #Scale	Relative L2 (\downarrow) #Latent	Relative L2 (\downarrow)	Data	Original (\downarrow)	Swapped (\downarrow)
DeepLag	0.0543	128	0.0559		0.0789		0.0656	2D	0.0543	0.0545
w/o LagToEu(·) w/o EuToLag(·) w/o Learnable Sampling	0.0556 0.0547 0.0552	256 512(ori) 768	0.0553 0.0543 0.0547	2 4(ori) 5	0.0658 0.0543 0.0554	32 64(ori) 128	0.0594 0.0543 0.0614	3D	0.0378	0.0378

4.4.2 GENERALIZATION


On high-resolution data

Resolution Mem	Time	Relative L2 (\downarrow)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1150s/ep	0.0543
256×256 13916MB	1300s/ep	0.0514

256×256, U-Net relative L2: 0.0600

On unseen boundary conditions

Model	Relative L2	
U-Net	0.217	
DeepLag	0.203	

5 SUMMARY AND FUTURE WORK

Inverse Problem PDE Discovery Forward Problem **PDE Solvers Operator Learning** Small data Some data Lots of data Lots of physics Some physics No physics A data-driven DL approach with Feature: physical interpretability through **Deep Lagrangian Dynamics**

- Addressing the interpretability of learned particle trajectories by aligning with Lagrangian numerical methods
- Introducing motion decomposition mechanisms and fluid-specific principles for specific scenarios to develop downstream specialized methods

OPEN SOURCE

E C thuml / Deep ↔ Code ⊙ Issues	bLag 11. Pull requests ⊙ Actions ⊞ Projects ⑦	Security 🗠 Insights 🕸 Settings		Q Type / to search	0 n 🖻 👶
	DeepLag (Public)		☆ Edit Pins ▼ ③ Watch 2 、	r € Fork 0 + Starred 1 +	
	🐉 main 👻 🐉 1 Branch 🚫 Tags	Q Go to file	t Add file - Code -	About 龄	
	Comma0103 initial commit		efb02e2 · 5 minutes ago 🛛 1 Commit	About Code release for "DeepLag: Discovering Deep Lagrangian Dynamics	
	models	initial commit	5 minutes ago	for Intuitive Fluid Prediction" (NeurIPS 2024), https://arxiv.org/abs/2402.02425	
	scripts	initial commit	5 minutes ago	Readme	
	🖿 utils	initial commit	5 minutes ago	~ Activity	
	🗅 .gitignore	initial commit	5 minutes ago	 E Custom properties 公 0 stars 	
	🗅 README.md	initial commit	5 minutes ago	 2 watching 	
	🗋 exp_bc_h.py	initial commit	5 minutes ago	양 0 forks Report repository	
	exp_bc_h_vortex.py	initial commit	5 minutes ago		
	🗋 exp_sea_h.py	initial commit	5 minutes ago	Releases	
	exp_sea_h_vortex.py	initial commit	5 minutes ago	No releases published Create a new release	
	exp_smoke_h.py	initial commit	5 minutes ago	Packages	
	model_dict.py	initial commit	5 minutes ago	No packages published	
	requirements.txt	initial commit	5 minutes ago	Publish your first package	
	test_bc_h.py	initial commit	5 minutes ago	Suggested workflows	
	test_bc_h_vortex.py	initial commit	5 minutes ago	Based on your tech stack	
	test_sea_h.py	initial commit	5 minutes ago	dj Django Configure	8

https://github.com/thuml/DeepLag

Complete benchmarks & datasets & scripts

THANKS FOR LISTENING!

mql22@mails.tsinghua.edu.cn

长按关注, 获取最新资讯