

TimeSiam: A Pre-Training Framework for Siamese Time-Series Modeling

Jiaxiang Dong^{*1} Haixu Wu^{*1} Yuxuan Wang¹ Yunzhong Qiu¹ Li Zhang¹ Jianmin Wang¹ Mingsheng Long¹

*Equal contribution ¹School of Software, BNRist, Tsinghua University. Jiaxiang Dong <djx20@mails.tsinghua.edu.cn>. Haixu Wu <wuhx23@mails.tsinghua.edu.cn> Correspondence to: Mingsheng Long <mingsheng@tsinghua.edu.cn>

Jiaxiang Dong

Haixu Wu

Yuxuan Wang Yunz

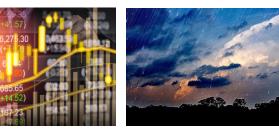
Yunzhong Qiu

Li Zhang

Jianmin Wang Mingsheng Long

Time Series In Real World

Energy

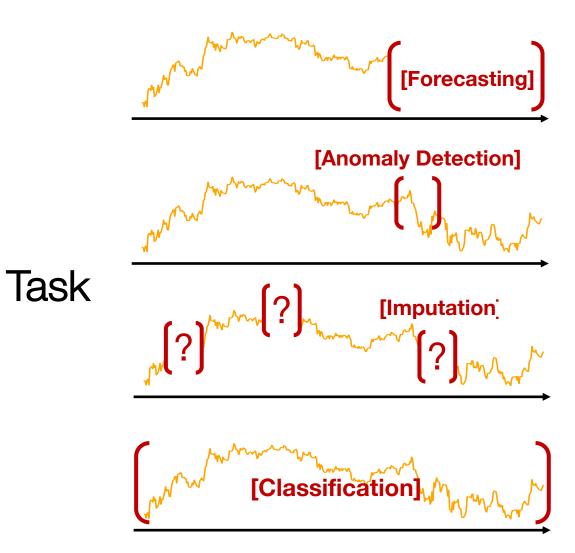


Economic

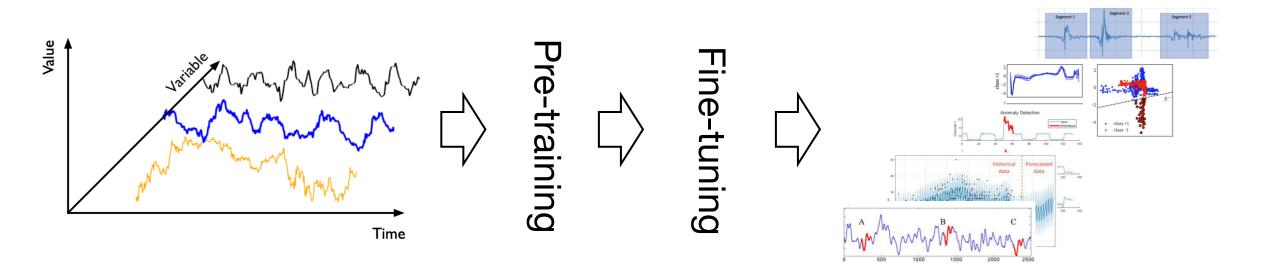
Weather

Traffic

Disease Ma



Pre-training and Fine-tuning in Time Series



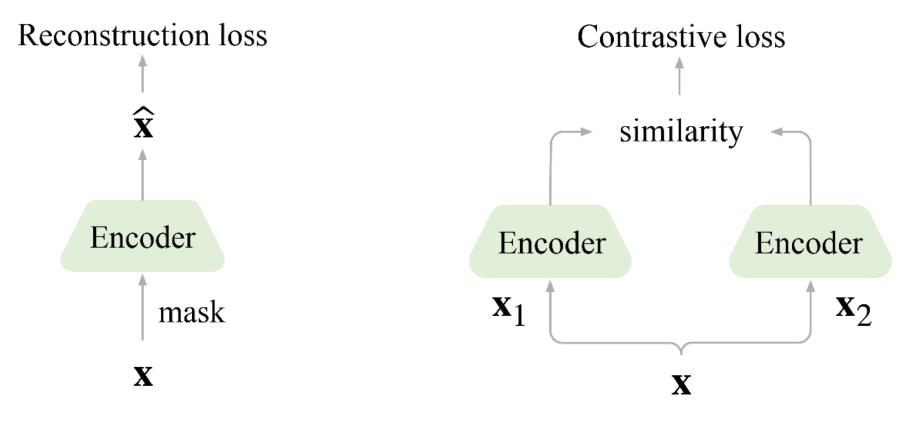
Diverse time series data

Downstream time series analysis tasks

(1) Use the model as the carrier of knowledge.

(2) Learn transferable temporal representations.

Pre-training Methods in Time Series



Masked Modeling

Reconstruct the masked content based on the unmasked part.

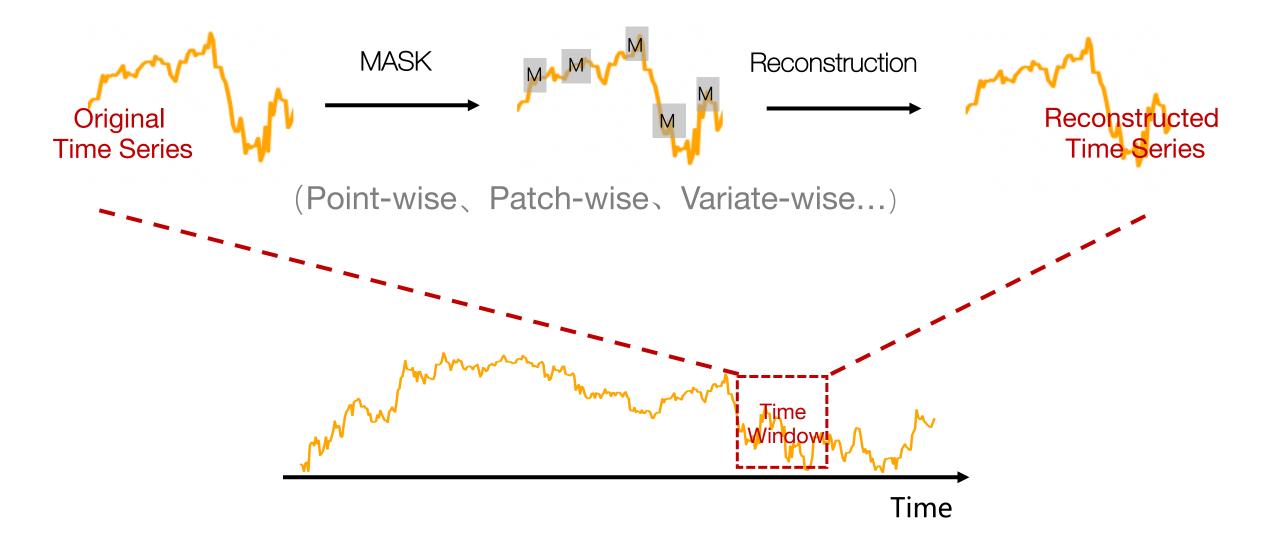
(TST、PatchTST、SimMTM...)

Contrastive Learning

Learn discriminative positive or negative representations.

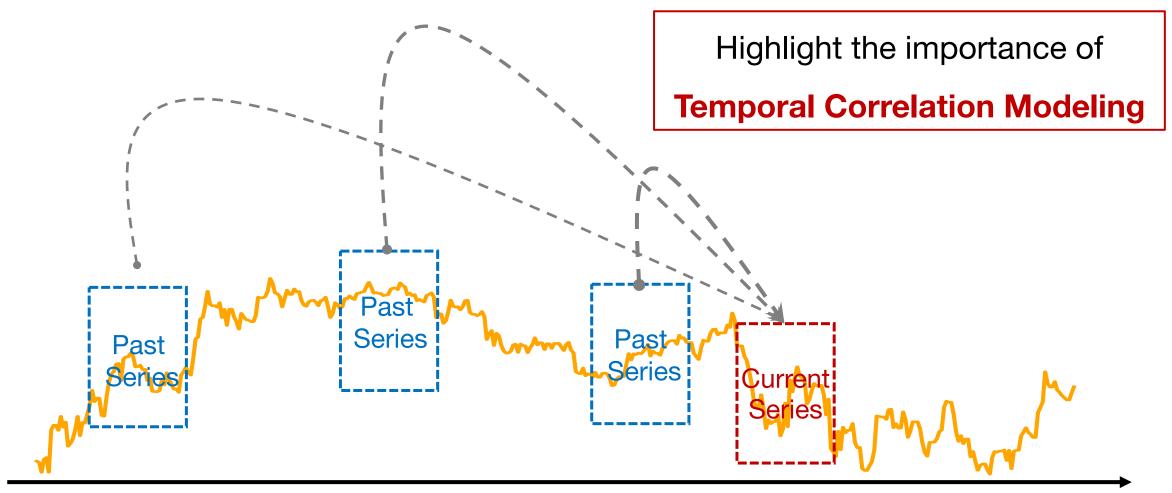
(TS2Vec、TFC、COMET...)

Masked Modeling in Time Series



Contrastive Learning in Time Series Time-Domain Contribute Positive and ()**Negative** Samples Far away ()Closer Augmentations Frequency-Domain Time า<mark>ป</mark>ด Time

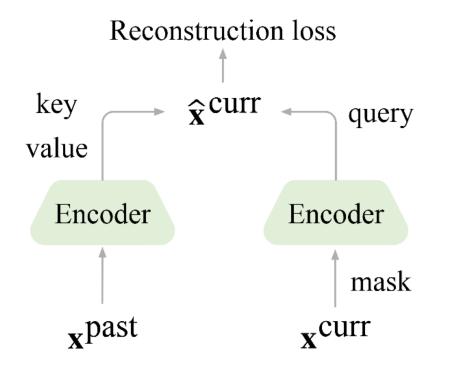
Temporal Correlation Modeling in Time Series



The most vital information in time series is preserved in the temporal correlations.

Time

Siamese Masked Modeling



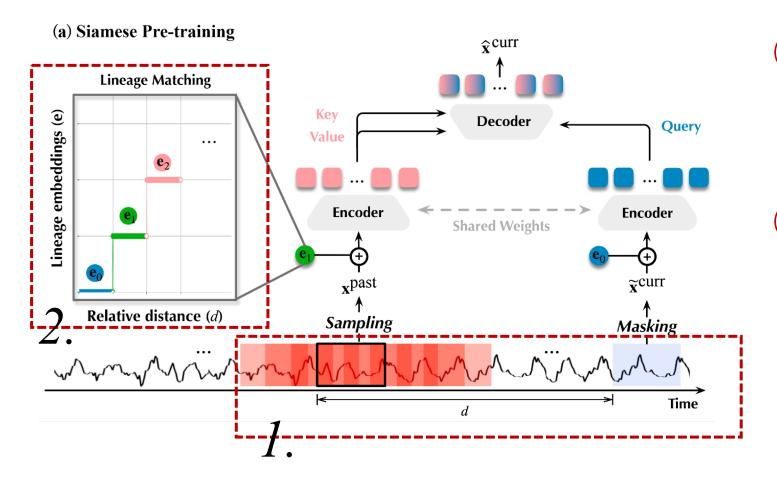
Emphasis on modeling time series association relationships from the past to the current

1) Siamese Network & Subseries

2 Past-to-Current Reconstruction

(3) Learnable Lineage Embeddings

Overall design of TimeSiam

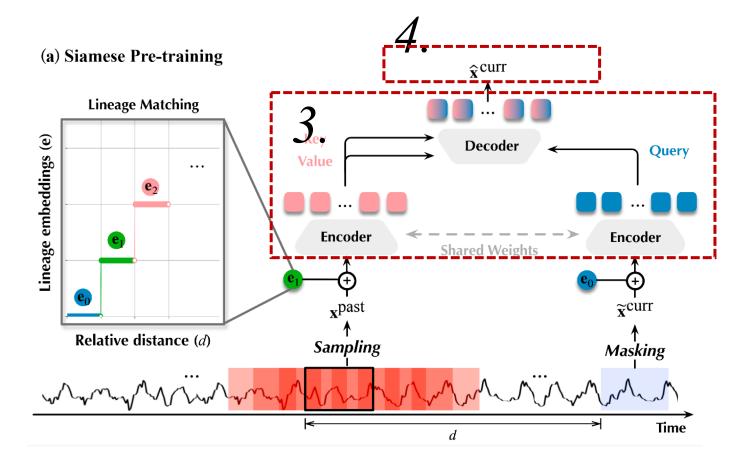


1 Siamese Sampling

$$(\mathbf{x}^{\text{past}}, \widetilde{\mathbf{x}}^{\text{curr}}) = \text{Mask-Augment}\left((\mathbf{x}^{\text{past}}, \mathbf{x}^{\text{curr}})\right).$$
 (1)

$$\begin{aligned} \mathbf{e}_{i}^{\text{lineage}} &= \text{LineageMatching}(d) \\ \mathbf{z}^{\text{past}} &= \text{Embed}(\mathbf{x}^{\text{past}}) \oplus \mathbf{e}_{i}^{\text{lineage}} \\ \widetilde{\mathbf{z}}^{\text{curr}} &= \text{Embed}(\widetilde{\mathbf{x}}^{\text{curr}}) \oplus \mathbf{e}_{0}^{\text{lineage}}, \end{aligned}$$

Overall design of TimeSiam



3 Representation Learning & Aggregation

$$\mathbf{h}_{e}^{\text{past}} = \text{Encoder}(\mathbf{z}^{\text{past}}), \ \mathbf{\widetilde{h}}_{e}^{\text{curr}} = \text{Encoder}(\mathbf{\widetilde{z}}^{\text{curr}}), \quad (3)$$
$$\mathbf{\widehat{h}}_{d} = \text{LayerNorm}\left(\mathbf{\widetilde{h}}_{e}^{\text{curr}} + \text{Cross-Attn}\left(\mathbf{\widetilde{h}}_{e}^{\text{curr}}, \mathbf{h}_{e}^{\text{past}}, \mathbf{h}_{e}^{\text{past}}\right)\right)$$
$$\mathbf{h}_{d}' = \text{LayerNorm}\left(\mathbf{\widehat{h}}_{d} + \text{Self-Attn}\left(\mathbf{\widehat{h}}_{d}, \mathbf{\widehat{h}}_{d}, \mathbf{\widehat{h}}_{d}\right)\right)$$
$$\mathbf{h}_{d} = \text{LayerNorm}\left(\mathbf{h}_{d}' + \text{FFN}\left(\mathbf{h}_{d}'\right)\right). \quad (4)$$

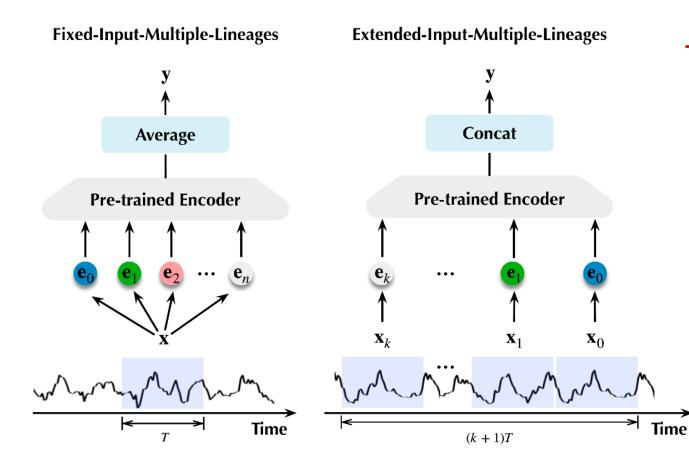
4 Series Reconstruction

$$\widehat{\mathbf{x}}^{\text{curr}} = \text{Projector}(\mathbf{h}_d). \tag{5}$$

$$\mathcal{L}_{\text{reconstruction}} = \|\mathbf{x}^{\text{curr}} - \widehat{\mathbf{x}}^{\text{curr}}\|_2^2.$$
(6)

Overall design of TimeSiam

(b) Fine-tuning



Pretrained Siamese Networks

+ Diverse Lineage Embeddings

1 Enrich Fixed representation

2 Enhance Extended Representations

$$\overline{\mathbf{h}}_{e} = \operatorname{Average}\left(\mathbf{h}_{e,0}, \mathbf{h}_{e,1}, \dots \mathbf{h}_{e,n}\right),$$

where $\mathbf{h}_{e,i} = \operatorname{Encoder}\left(\operatorname{Embed}(\mathbf{x}) \oplus \mathbf{e}_{i}^{\operatorname{lineage}}\right).$ (7)

$$\overline{\mathbf{h}}_{e} = \text{Concat} \left(\mathbf{h}_{e,0}, \mathbf{h}_{e,1}, \dots, \mathbf{h}_{e,k} \right),$$

where $\mathbf{h}_{e,i} = \text{Encoder} \left(\text{Embed}(\mathbf{x}_{i}) \oplus \mathbf{e}_{\text{LineageMatching}(iT)}^{\text{lineage}} \right).$
(8)

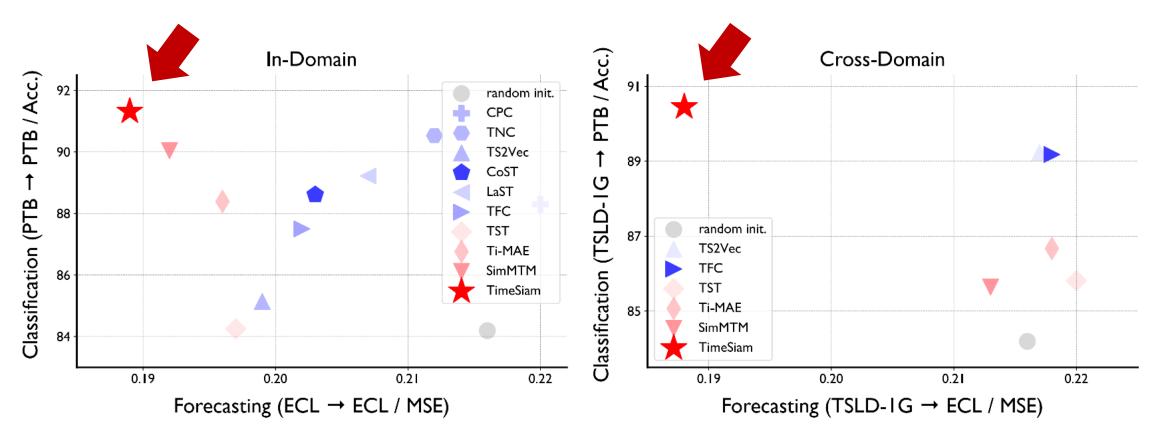
Experiment: Overall

TASKS	DATASETS	DOMAIN	EXAMPLES		
	ETT (4 subsets)	Electricity	14.3K		
Forecasting	Weather	Weather	52.7K		
	Electricity	Electricity	26.3K		
	Traffic	Transportation	17.5K		
	Exchange	Finance	7.6K		
	TSLD-500M	Multiple	412.6K		
	TSLD-1G	Multiple	13.9M		
Classification	AD	EEG	5.97K		
	TDBrain	EEG	11.9K		
	PTB	ECG	62.4K		

Table 1. Summary of experiment benchmarks, where TSLD-500M and TSLD-1G are newly constructed from diverse domains.

- ✓ Two typical time series analysis tasks: Forecasting and Classification.
- Under multiple experiment settings: In- and Cross domain, Single and Multiple
 Mixed Datasets.
- ✓ Compared to 11 advanced baselines covering 13 standard benchmarks.

Experiment: Overall



TimeSiam outperforms other baselines significantly in all settings!

Experiment: Forecasting and Classification

ENCODER	METHOD	ETTH1	ETTH2	ETTM1	ETTM2	WEATHER	EXCHANGE	ECL	TRAFFIC	-	MET	'HOD	AD	TDBRAIN	РТВ	
PatchTST	RANDOM INIT.	0.473	0.385	0.390	0.285	0.259	0.367	0.216	0.490			DOM INIT.	80.62	79.08	84.19	
	CPC (2018)	0.440	0.401	0.389	0.290	0.272	0.368	0.220	0.504		KAN	DOM INTI.	00.02	79.00	04.19	
	TNC (2021)	0.445	0.379	0.386	0.287	0.270	0.362	0.212	0.501		CPC	(2018)	77.40	85.19	88.30	
	TS2VEC (2022) CoST (2022)	0.456	0.376 0.374	0.393 0.395	$0.289 \\ 0.286$	0.256 0.253	0.363 0.364	0.199 0.203	$0.472 \\ 0.480$			(2021)	78.58	85.21	90.53	
	LAST (2022)	0.479	0.385	0.395	0.285	0.255	0.433	0.203	0.520			VEC (2022)	81.26	80.21	85.14	
	TF-C (2022)	0.453	0.378	0.389	0.281	0.257	0.362	0.202	0.487							
	TST (2021)	0.452	0.383	0.380	0.288	0.259	0.385	0.197	0.486		Cos	T (2022)	73.87 72.63	83.86	88.61	
	ТІ-МАЕ (2023в)	0.448	0.379	0.384	0.279	0.257	0.370	0.196	0.481		LAS	LAST (2022)		85.13	89.22	
	PATCHTST ^{\dagger} (2023)	0.442	0.381	0.379	0.285	0.267	0.358	0.200	0.484		TF-C	C (2022)	75.31	66.62	87.50	
	SIMMTM (2023)	0.440	0.382	0.377	0.285	0.256	0.361	0.192	0.466		CON	AET (2023)	84.50	85.47	87.84	DTD
	TIMESIAM	0.429	0.373	0.374	0.279	0.252	0.353	0.189	0.453			(2021)	81.50	83.22	84.25	PTB
ITRANSFORMER	RANDOW INTL.	0.454	0.383	0.407	0.288	0.258	0.365	0.178	0.428			· · · ·				84.19
	TS2VEC (2022)	0.474	0.379	0.411	0.290	0.264	0.364	0.246	0.485			IAE (2023B)	80.70	88.16	88.39	04.17
	CoST (2022)	0.472	0.386	0.411	0.294	0.269	0.366	0.252	0.529		Simi	MTM (2023)	86.19	84.81	90.04	89.23
	LAST (2022)	0.465	0.386	0.400	0.302	0.262	0.386	0.237	0.477	ECL	TIM	ESIAM	89.93	90.67	91.32	
	TF-C (2022)	0.450	0.379	0.403	0.292	0.265	0.372	0.222	0.432	.216	- 11M	ESIAM	09.95	90.07	91.52	89.18
	TST (2021)	0.447	0.376	0.399	0.291	0.261	0.363	0.228	0.438			TST (2021) [82.60	83.65	85.81
	TI-MAE (2023B)	0.448	0.378	0.399	0.289	0.257	0.366	0.217	0.430	.217	0.528	TI-MAE (2	·	80.40	85.22	86.67
	SIMMTM (2023)	0.445	0.376	0.397	0.286	0.259	0.358	0.179	0.426	.218	0.543		· · · · ·			
	TIMESIAM	0.440	0.371	0.390	0.284	0.256	0.355	0.175	0.420	.220	0.514	SIMMTM ((2023)	87.74	85.29	85.64
	11-MAL (2023b)	0.455	0.5	/+ (0.274	0.230	0.	302	0.218	0.515	Trunger		00.47	86.36	00.45
	SIMMTM (2023)	0.429	0.3	80 ().375	0.287	0.252	0.	365	0.213	0.459	TIMESIAM	L	90.47	86.26	90.45
(TIMESIAM	0.425	5 0.3	74 ().371	0.286	0.251	0.	.360	0.188	0.454					

TimeSiam consistently outperforms other pre-training methods for forecasting and classification tasks.

Experiment: Larger Data and Model Capability

Table 7. Fine-tuning performance of TimeSiam under different pretraining data and model sizes. Relative improvement over random initialization (%) is marked in green. See Appendix A.3 for details.

PRE-TRAIN	TRAFFIC	ECL
Random initiation	0.490	0.216
TimeSiam in-domain	0.453	0.189
TimeSiam _{Base} TSLD _{500M}	0.462 (+5.7)	0.189 (+12.5)
TimeSiam _{Base} TSLD _{1G}	0.454 (+7.4)	0.188 (+12.5)
TimeSiam _{Large} TSLD _{1G}	0.433 (+11.6)	0.185 (+14.4)

Highlights the efficacy of TimeSiam and the positive correlation between data-model size and the final performance.

Experiment: Linear Probing

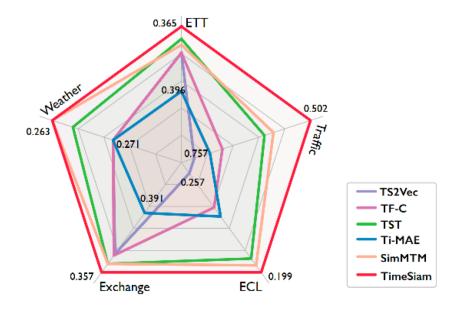


Figure 5. Linear probing on in-domain forecasting setting. Average results (MSE) are reported. Full results are shown in Table 17.

- Higher quality temporal representations.
- The effectiveness in capturing the essential characteristics of time series data

Experiment: Extended Input Length for Fine-tuning

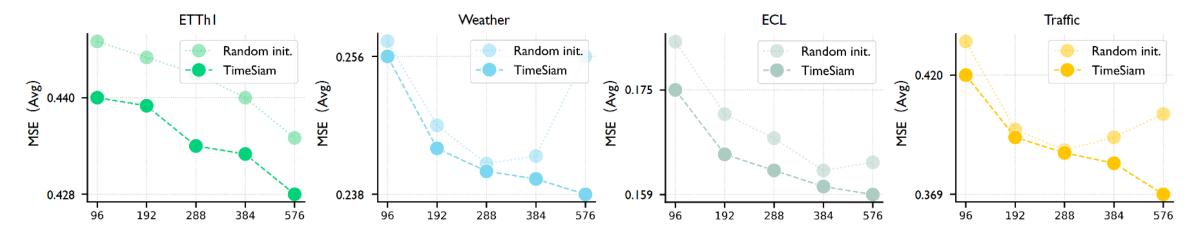
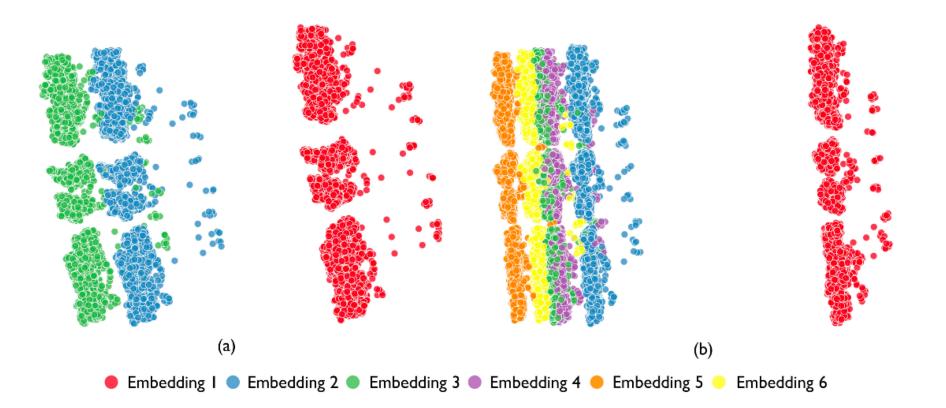


Figure 4. Fine-tuning the pre-trained model to the inputs with extended length $\{96, 192, 288, 384, 576\}$ based on iTransformer (Liu et al., 2024). The MSE averaged from all predicted horizons $\{96, 192, 336, 720\}$ is reported. Additional results are in the Appendix F.

Benefiting from an ingenious integration of Siamese modeling and lineage embeddings, TimeSiam achieves more accurate predictions from extended input series.

Experiment: Representation Shows



The representations generated based on the same data but with different lineage embeddings exhibit a high level of diversity

Experiment: Past-to-Current Reconstruction Shows

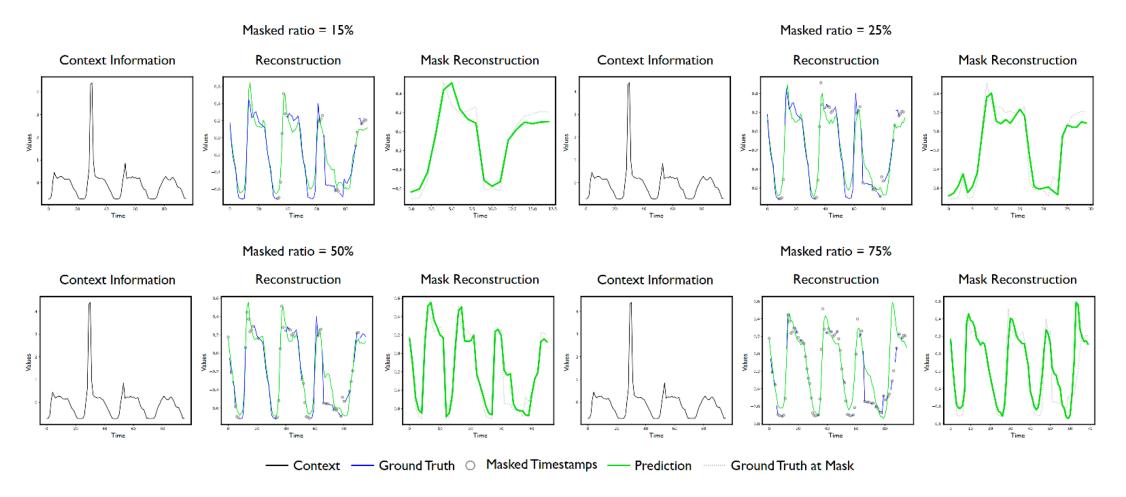
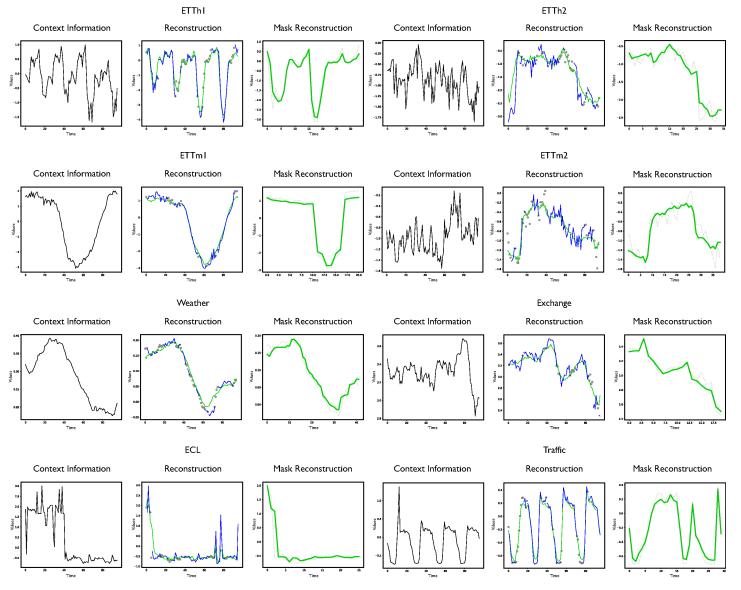


Figure 11. Showcases of TimeSiam in reconstructing time series with different masked ratios from Traffic.

Experiment: Past-to-Current Reconstruction Shows

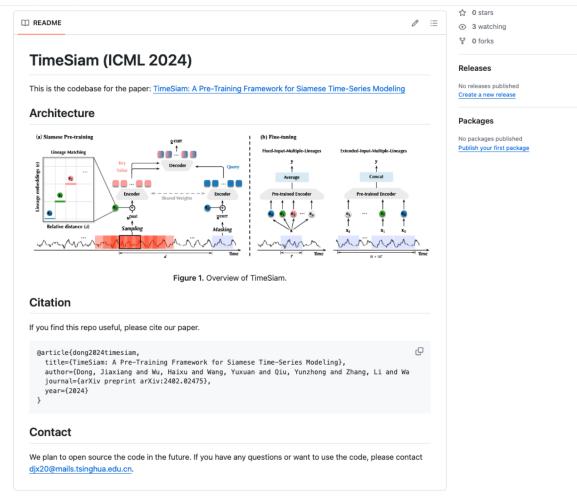


----- Context ----- Ground Truth O Masked Timestamps ----- Prediction Ground Truth at Mask

Open Source

sithub.com/thuml/TimeSiam

]系统网址 🗅 github 🗀 收藏网址 🗀 清华相关 🗀 工具 🗀 个人



Code will be open source at https://github.com/thuml/TimeSiam

Thank You! djx20@mails.tsinghua.edu.cn

