

Forty-first International Conference on Machine Learning

HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction

Lanxiang Xing *1 Haixu Wu *1 Yuezhou Ma 1 Jianmin Wang 1 Mingsheng Long 1

Fluid Prediction

Navier-Stokes Equation:

$$ho rac{\mathrm{D} \mathbf{v}}{\mathrm{D} t} =
abla \cdot \mathbb{P} +
ho \mathbf{f}$$

(a) Vehicle shape design

(b) Airfoil Design

(c) Ocean Current Prediction

Computational Fluid Dynamics

Computational Fluid Dynamics

Slow! Partial Observation?

https://cfd.direct/openfoam/computational-fluid-dynamics/

Computational Fluid Dynamics

Slow! Partial Observation?

Data-driven deep models for fluid prediction

Universal Approximation Theorem for Operator:

The potential application of neural networks to learn nonlinear operators from data

Theorem 1 (Universal Approximation Theorem for Operator). Suppose that σ is a continuous nonpolynomial function, X is a Banach Space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a nonlinear continuous operator, which maps V into $C(K_2)$. Then for any $\epsilon > 0$, there are positive integers n, p, m, constants $c_i^k, \xi_{ij}^k, \theta_i^k, \zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, $i = 1, \ldots, n, k = 1, \ldots, p, j = 1, \ldots, m$, such that

$$\left| G(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \underbrace{\sigma(w_k \cdot y + \zeta_k)}_{trunk} \right| < \epsilon$$
(1)

holds for all $u \in V$ and $y \in K_2$.

Lu, et al. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. JMM 2020

Latent Spectral Models

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021 Wu, et al. Solving high-dimensional pdes with latent spectral models. ICML 2023

Latent Spectral Models

No interpretable evidence

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021 Wu, et al. Solving high-dimensional pdes with latent spectral models. ICML 2023

Physics informed neural networks:

Equation as loss function

$$\nabla \cdot \vec{v} = 0 \qquad \text{incompressibility on } \Omega \qquad (1)$$

$$\rho \dot{\vec{v}} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \mu \Delta \vec{v} + \vec{f} \qquad \text{conservation of momentum on } \Omega \qquad (2)$$

$$\vec{v} = \vec{v}_d \qquad \text{Dirichlet boundary condition on } \partial \Omega \qquad (3)$$

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021 Raiss, et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 2019

Physics informed neural networks:

Equation as loss function

$$\nabla \cdot \vec{v} = 0 \qquad \text{incompressibility on } \Omega \qquad (1)$$

$$\rho \dot{\vec{v}} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \mu \Delta \vec{v} + \vec{f} \qquad \text{conservation of momentum on } \Omega \qquad (2)$$

$$\vec{v} = \vec{v}_d \qquad \text{Dirichlet boundary condition on } \partial \Omega \qquad (3)$$

$$L_d = \|\nabla \cdot \vec{v}\|^2 \qquad \text{divergence loss on } \Omega \qquad (8)$$

$$L_p = \left\| \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) + \nabla p - \mu \Delta \vec{v} - \vec{f} \right\|^2 \qquad \text{momentum loss on } \Omega \qquad (9)$$

$$L_b = \|\vec{v} - \vec{v}_d\|^2 \qquad \text{boundary loss on } \partial \Omega \qquad (10)$$

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

$$L_{d} = \left\| \nabla \cdot \vec{v} \right\|^{2}$$
$$L_{p} = \left\| \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) + \nabla p - \mu \Delta \vec{v} - \vec{f} \right\|^{2}$$
$$L_{b} = \left\| \vec{v} - \vec{v}_{d} \right\|^{2}$$

- divergence loss on Ω (8)
- momentum loss on Ω (9)
- boundary loss on $\partial \Omega$ (10)

Learning Kármán vortex street & Magnus effect from scratch

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

$$L_{d} = \left\| \nabla \cdot \vec{v} \right\|^{2}$$
$$L_{p} = \left\| \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) + \nabla p - \mu \Delta \vec{v} - \vec{f} \right\|^{2}$$
$$L_{b} = \left\| \vec{v} - \vec{v}_{d} \right\|^{2}$$

- divergence loss on Ω (8)
- momentum loss on Ω (9)
- boundary loss on $\partial \Omega$ (10)

Learning Kármán vortex street & Magnus effect from scratch

Highly rely on exact physics equations

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

Fluid Dynamics Modeling

Deep Optical flow:

Estimate fluid dynamics and predict future fluid field

Sun, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CVPR 2018

Fluid Dynamics Modeling

Deep Optical flow:

Estimate fluid dynamics and predict future fluid field

Hard to capture complex dynamics

Sun, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CVPR 2018

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

 $\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \ \mathbf{r} \in \mathbb{V}.$

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

$$\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \ \mathbf{r} \in \mathbb{V}.$$

$$\mathbf{F}_{\text{Helm}}(\Phi, \mathbf{A}) = \nabla \Phi + \nabla \times \mathbf{A}$$

$$= \underbrace{\left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right)}_{\text{Curl-free Velocity}} + \underbrace{\left(\frac{\partial \mathbf{A}}{\partial y}, -\frac{\partial \mathbf{A}}{\partial x}\right)}_{\text{Divergence-free Velocity}}$$

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

$$\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \ \mathbf{r} \in \mathbb{V}$$
$$\mathbf{F}_{\text{Helm}}(\Phi, \mathbf{A}) = \nabla \Phi + \nabla \times \mathbf{A}$$
$$= \underbrace{\left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right)}_{\text{Curl-free Velocity}} + \underbrace{\left(\frac{\partial \mathbf{A}}{\partial y}, -\frac{\partial \mathbf{A}}{\partial x}\right)}_{\text{Divergence-free Velocity}}$$

Recap: dynamics modeling

Teed, et al. Raft: Recurrent all-pairs field transforms for optical flow. ECCV 2020

Boundary conditions in Helmholtz decomposition

$$egin{aligned} \Phi(\mathbf{r}) &\equiv rac{1}{4\pi} \int_V rac{
abla' \cdot \mathbf{F}\left(\mathbf{r}'
ight)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}V' - rac{1}{4\pi} \oint_S \mathbf{\hat{n}}' \cdot rac{\mathbf{F}\left(\mathbf{r}'
ight)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}S' \ \mathbf{A}(\mathbf{r}) &\equiv rac{1}{4\pi} \int_V rac{
abla' imes \mathbf{F}\left(\mathbf{r}'
ight)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}V' - rac{1}{4\pi} \oint_S \mathbf{\hat{n}}' imes rac{\mathbf{F}\left(\mathbf{r}'
ight)}{|\mathbf{r}-\mathbf{r}'|} \mathrm{d}S' \end{aligned}$$

HelmDynamics block, which learns spatiotemporal correlations **c**(**r**) both **in the domain** and **on the boundary** to estimate potential and stream functions of fluid from past observations for composing the Helmholtz dynamics.

Multihead: capture different dynamic patterns

Multiscale: capture different properties at different scales

Multiscale: capture different properties at different scales

We adopt the back-and-forth error compensation and correction (BFECC, (Kim et al., 2005)) for better position mapping

HelmFluid Experiments

Simulated Data

Navier-Stokes dataset

Simulated Data

Bounded N-S dataset

Model	RELATIVE L2
DARTS (RUZANSKI ET AL., 2011)	0.1820
U-NET (RONNEBERGER ET AL., 2015)	0.0846
FNO (LI ET AL., 2021)	0.1176
MWT (GUPTA ET AL., 2021)	0.1407
U-NO (RAHMAN ET AL., 2023)	0.1200
LSM (WU ET AL., 2023)	0.0737
HelmFluid (Ours)	0.0652
PROMOTION	11.5%

	MODELS RI		
Real-world Data	U-NET (RONNEBERGER ET AL., 2015)	632.94	
	MWT (GUPTA ET AL., 2021)	596.80	
ERA5 Z500 dataset	U-NO (RAHMAN ET AL., 2023)	596.84	
	LSM (WU ET AL., 2023)	<u>561.27</u>	
	FOURCASTNET (PATHAK ET AL., 2022)	594.49	
	HELMFLUID (OURS)	521.44	
	PROMOTION	7.1%	

Real-World Data

Sea Temperature dataset

MODELS	RELATIVE L2	MSE
DARTS (RUZANSKI ET AL., 2011)	0.3308	0.1094
U-NET (RONNEBERGER ET AL., 2015)	0.1735	0.0379
FNO (LI ET AL., 2021)	0.1935	0.0456
MWT (GUPTA ET AL., 2021)	0.2075	0.0506
U-NO (RAHMAN ET AL., 2023)	0.1969	0.0472
LSM (WU ET AL., 2023)	0.1759	0.0389
HELMFLUID (OURS)	0.1704	0.0368
PROMOTION	1.8%	2.9%

Real-World Data

Spreading Ink dataset

MODELS	METRICS		
U-NET (RONNEBERGER ET AL., 2015)	3.596 / 0.2620 / 0.0176		
FNO (LI ET AL., 2021)	4.095 / 0.2776 / 0.0198		
U-NO (RAHMAN ET AL., 2023)	5.604 / 0.2971 / 0.0227		
VORTEX (DENG ET AL., 2023)	3.949 / 0.2483 / 0.0161		
LSM (WU ET AL., 2023)	3.760 / 0.2698 / 0.0187		
HELMFLUID (OURS)	3.323 / 0.2183 / 0.0125		
PROMOTION	7.6% / 12.1% / 22.3%		

Figure 15. Showcases of HelmFluid, DARTS, and MWT on the Spread Ink dataset .

Extend to 3D

	T=1	T=2	T=3	T=4	T=5	T=6	T=7	T=8	T =9	T=10
Ground Truth	See and	200		No.		No.	A A	N N	No.	N.
Predict Field	A CAR	ALL ST	A Star	200	12	23	No.	No. 18	N. A	2 W
Ground Truth (Horizontal)	-	1	5	H	Et.	R	Sel	3	33	
Predict Field (Horizontal)		1	h	5	5	5	52	Sec.	35	23
Error (Horizontal)		1 2 -								

Ablations

With / without HelmDynamics

With / without potential / stream function

METRICS	HELMDYNAMICS	ONLY POTENTIAL FUNCTION	ONLY STREAM FUNCTION
RELATIVE L2	0.1261	0.1460	0.1305
GPU MEMORY (GB)	16.30	16.29	16.30
TRAINING TIME (S / EPOCH)	80.20	79.57	79.60

Ablations

With / without boundary conditions

Ground Truth (T=10)

Without Boundary

With Boundary

Error without Boundary Test L2: 0.0846

Test L2: 0.0652

0.50

0.25

0.00

-0.25

-0.50

Ground Truth

Different hyperparameter

✓1 1	1		<u> </u>	
ORDER OF RUNGE-KUTTA	1	2	3	4
RELATIVE L2	0.1298	0.1261	0.1268	0.1278
TRAINING TIME (S / EPOCH)	80.04	81.20	88.30	90.49
NUMBER OF HEADS M	1	4	8	16
PARAMETER NUMBER	11,063,245	9,929,101	9,812,653	9,762,205
RELATIVE L2	0.1344	0.1261	0.1279	0.1249
TRAINING TIME (S / EPOCH)	59.69	81.20	120.86	171.97
NUMBER OF SCALES L	2	3	4	5
PARAMETER NUMBER	9,283,977	9,929,101	15,906,193	29,820,309
RELATIVE L2	0.1514	0.1261	0.1361	0.1330
TRAINING TIME (S / EPOCH)	64.43	81.20	99.83	120.06

Dynamics Tracking

Open Source

HelmFluid Public		🔊 Edit Pins 👻 👁 Watch 4 🕶	♀ Fork ● ★ Starred 4 ▼
🐉 main 👻 🥲 1 Branch 🛇 0 Tags	Q Go to file	(t) Add file 🔹 <> Code 🔹	About 🕸
BluesCrossing Add files via upload		e082267 · yesterday 🛛 2 Commits	About code release of "HelmFluid: Learning Helmholtz Dynamics for
ata_provider	Add files via upload	yesterday	Interpretable Fluid Prediction", ICML 2024. https://arxiv.org/pdf/2310.10565
🖿 fig	Add files via upload	yesterday	🛱 Readme
models	Add files via upload	yesterday	제 MIT license
scripts	Add files via upload	yesterday	 ✓ Activity E Custom properties ☆ 3 stars ④ 4 watching ♀ 0 forks
🖿 utils	Add files via upload	yesterday	
	Initial commit	yesterday	
README.md	Add files via upload	yesterday	Report repository
exp_fluid_boundary_128.py	Add files via upload	yesterday	Palascar
🗅 exp_ns.py	Add files via upload	yesterday	No releases published
🗅 exp_real_video.py	Add files via upload	yesterday	Create a new release
🗅 exp_sea.py	Add files via upload	yesterday	Packages
exp_smoke.py	Add files via upload	yesterday	No packages published
exp_z500.py	Add files via upload	yesterday	тарлан уран шак раскаде
model_dict.py	Add files via upload	yesterday	Languages
🗅 requirements.txt	Add files via upload	yesterday	Python 99.3% Shell 0.7%

https://github.com/thuml/HelmFluid

Thank You!

xlx22@mails.tsinghua.edu.cn

