

Forty-**first International Conference on Machine Learning**

HelmFluid: Learning Helmholtz Dynamics for Interpretable Fluid Prediction

Lanxiang Xing^{*1} Haixu Wu^{*1} Yuezhou Ma¹ Jianmin Wang¹ Mingsheng Long¹

Fluid Prediction

Navier-Stokes Equation:

$$
\rho \frac{\rm D{\bf v}}{\rm D}t=\nabla\cdot\mathbb{P}+\rho {\bf f}
$$

(a) Vehicle shape design (b) Airfoil Design (c) Ocean Current Prediction

Computational Fluid Dynamics

https://cfd.direct/openfoam/computational-fluid-dynamics/

Computational Fluid Dynamics

Slow! **Partial Observation**?

https://cfd.direct/openfoam/computational-fluid-dynamics/

Computational Fluid Dynamics

Slow! **Partial Observation**?

Data-**driven deep models for fluid prediction**

https://cfd.direct/openfoam/computational-fluid-dynamics/

Universal Approximation Theorem for Operator:

The potential application of neural networks to learn nonlinear operators from data

Theorem 1 (Universal Approximation Theorem for Operator). Suppose that σ is a continuous nonpolynomial function, X is a Banach Space, $K_1 \subset X$, $K_2 \subset \mathbb{R}^d$ are two compact sets in X and \mathbb{R}^d , respectively, V is a compact set in $C(K_1)$, G is a nonlinear continuous operator, which maps V into $C(K_2)$. Then for any $\epsilon > 0$, there are positive integers n, p, m, constants $c_i^k, \xi_{ij}^k, \theta_i^k, \zeta_k \in \mathbb{R}$, $w_k \in \mathbb{R}^d$, $x_j \in K_1$, $i = 1, ..., n, k = 1, ..., p, j = 1, ..., m$, such that

$$
\left| G(u)(y) - \sum_{k=1}^{p} \underbrace{\sum_{i=1}^{n} c_i^k \sigma \left(\sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right)}_{branch} \underbrace{\sigma(w_k \cdot y + \zeta_k)}_{trunk} \right| < \epsilon
$$
\n(1)

holds for all $u \in V$ and $y \in K_2$.

Lu, et al. Deeponet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators. JMM 2020

Latent Spectral Models

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021 Wu, et al. Solving high-dimensional pdes with latent spectral models. ICML 2023

Latent Spectral Models

No interpretable evidence

Li, et al. Fourier neural operator for parametric partial differential equation. ICLR 2021 Wu, et al. Solving high-dimensional pdes with latent spectral models. ICML 2023

Physics informed neural networks:

Equation as loss function

$$
\nabla \cdot \vec{v} = 0
$$
incompressibility on Ω (1)
\n
$$
\rho \dot{\vec{v}} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \mu \Delta \vec{v} + \vec{f}
$$
conservation of momentum on Ω (2)
\n
$$
\vec{v} = \vec{v}_d
$$
Dirichlet boundary condition on $\partial \Omega$ (3)

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021 Raiss, et al. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational physics 2019

Physics informed neural networks:

Equation as loss function

$$
\nabla \cdot \vec{v} = 0 \qquad \text{incompressibility on } \Omega \qquad (1)
$$
\n
$$
\rho \dot{\vec{v}} = \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) = -\nabla p + \mu \Delta \vec{v} + \vec{f} \qquad \text{conservation of momentum on } \Omega \qquad (2)
$$
\n
$$
\vec{v} = \vec{v}_d \qquad \text{Dirichlet boundary condition on } \partial \Omega \qquad (3)
$$
\n
$$
L_d = \|\nabla \cdot \vec{v}\|^2 \qquad \text{divergence loss on } \Omega \qquad (8)
$$
\n
$$
L_p = \left\| \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) + \nabla p - \mu \Delta \vec{v} - \vec{f} \right\|^2 \qquad \text{momentum loss on } \Omega \qquad (9)
$$
\n
$$
L_b = \|\vec{v} - \vec{v}_d\|^2 \qquad \text{boundary loss on } \partial \Omega \qquad (10)
$$

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

$$
L_d = \left\| \nabla \cdot \vec{v} \right\|^2
$$

\n
$$
L_p = \left\| \rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v} \right) + \nabla p - \mu \Delta \vec{v} - \vec{f} \right\|^2
$$

\n
$$
L_b = \left\| \vec{v} - \vec{v}_d \right\|^2
$$

- divergence loss on Ω (8)
- momentum loss on Ω (9)
- boundary loss on $\partial\Omega$ (10)

Learning Kármán vortex street & Magnus effect **from scratch**

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

$$
L_d = \left\|\nabla \cdot \vec{v}\right\|^2
$$

\n
$$
L_p = \left\|\rho \left(\frac{\partial \vec{v}}{\partial t} + (\vec{v} \cdot \nabla) \vec{v}\right) + \nabla p - \mu \Delta \vec{v} - \vec{f}\right\|^2
$$

\n
$$
L_b = \left\|\vec{v} - \vec{v}_d\right\|^2
$$

- divergence loss on Ω (8)
- momentum loss on Ω (9)
- boundary loss on $\partial\Omega$ (10)

Learning Kármán vortex street & Magnus effect **from scratch**

Highly rely on exact physics equations

Wande, et al. Learning Incompressible Fluid Dynamics from Scratch--Towards Fast, Differentiable Fluid Models that Generalize. ICLR 2021

Fluid Dynamics Modeling

Deep Optical flow:

Estimate fluid dynamics and predict future fluid field

Sun, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CVPR 2018

Fluid Dynamics Modeling

Deep Optical flow:

Estimate fluid dynamics and predict future fluid field

Hard to capture complex dynamics

Sun, et al. Pwc-net: Cnns for optical flow using pyramid, warping, and cost volume. CVPR 2018

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

 $\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \mathbf{r} \in \mathbb{V}.$

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

$$
\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \ \mathbf{r} \in \mathbb{V}.
$$
\n
$$
\mathbf{F}_{\text{Helm}}(\Phi, \mathbf{A}) = \nabla \Phi + \nabla \times \mathbf{A}
$$
\n
$$
= \underbrace{\left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right)}_{\text{Curl-free Velocity}} + \underbrace{\left(\frac{\partial \mathbf{A}}{\partial y}, -\frac{\partial \mathbf{A}}{\partial x}\right)}_{\text{Divergence-free Velocity}}
$$

Helmholtz Dynamics

From Helmholtz decomposition to *Helmholtz Dynamics*:

A 3D dynamic field can be decomposed into a curl-free component and a divergence-free component.

$$
\mathbf{F}(\mathbf{r}) = \nabla \Phi(\mathbf{r}) + \nabla \times \mathbf{A}(\mathbf{r}), \ \mathbf{r} \in \mathbb{V}
$$
\n
$$
\mathbf{F}_{\text{Helm}}(\Phi, \mathbf{A}) = \nabla \Phi + \nabla \times \mathbf{A}
$$
\n
$$
= \left(\frac{\partial \Phi}{\partial x}, \frac{\partial \Phi}{\partial y}\right) + \left(\frac{\partial \mathbf{A}}{\partial y}, -\frac{\partial \mathbf{A}}{\partial x}\right)
$$
\n
$$
\text{Curl-free Velocity} \quad \text{Divergence-free Velocity}
$$

Recap: dynamics modeling

Teed, et al. Raft: Recurrent all-pairs field transforms for optical flow. ECCV 2020

Boundary conditions in Helmholtz decomposition

$$
\Phi(\mathbf{r}) \equiv \frac{1}{4\pi} \int_{V} \frac{\nabla' \cdot \mathbf{F}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dV' - \frac{1}{4\pi} \int_{S} \hat{\mathbf{n}}' \cdot \frac{\mathbf{F}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} dS' - \frac{1}{4\pi} \int_{S} \mathbf{r}' dV' dV' + \
$$

HelmDynamics block, which learns spatiotemporal correlations **c**(**r**) both **in the domain** and **on the boundary** to estimate potential and stream functions of fluid from past observations for composing the Helmholtz dynamics.

Multihead: capture different dynamic patterns

Multiscale: capture different properties at different scales

Multiscale: capture different properties at different scales

We adopt the back-and-forth error compensation and correction (BFECC, (Kim et al., 2005)) for better position mapping

HelmFluid Experiments

Simulated Data

Navier-Stokes dataset

Simulated Data

Bounded N-S dataset

Real-World Data

Sea Temperature dataset

Real-World Data

Spreading Ink dataset

Figure 15. Showcases of HelmFluid, DARTS, and MWT on the Spread Ink dataset.

Extend to 3D

Ablations

With / without HelmDynamics

With / without potential / stream function

Ablations

With / without boundary conditions

Ground Truth (T=10)

Without Boundary

With Boundary

Error without Boundary Test L2: 0.0846

 0.50

Different hyperparameter

Dynamics Tracking

Open Source

https://github.com/thuml/[HelmFluid](https://github.com/thuml/HelmFluid)

Thank You!

xlx22@mails.tsinghua.edu.cn

