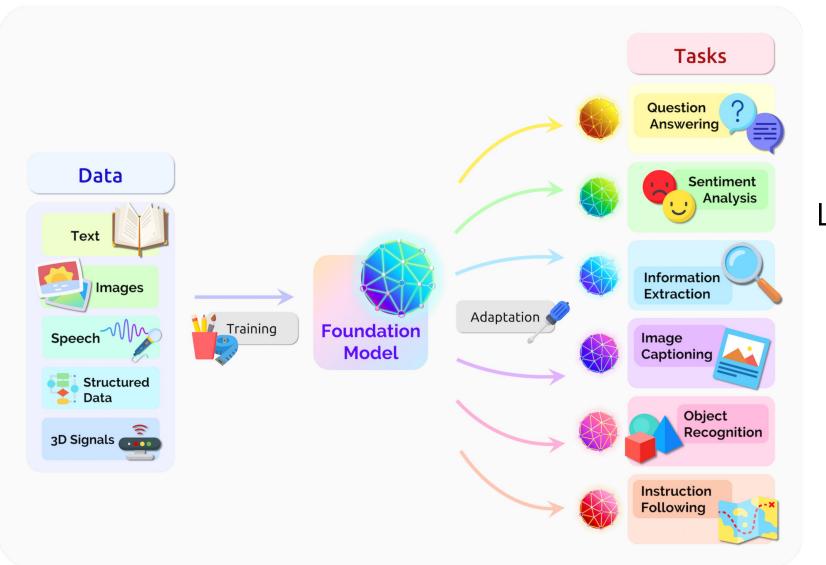


Thirty-ninth International Conference on Machine Learning



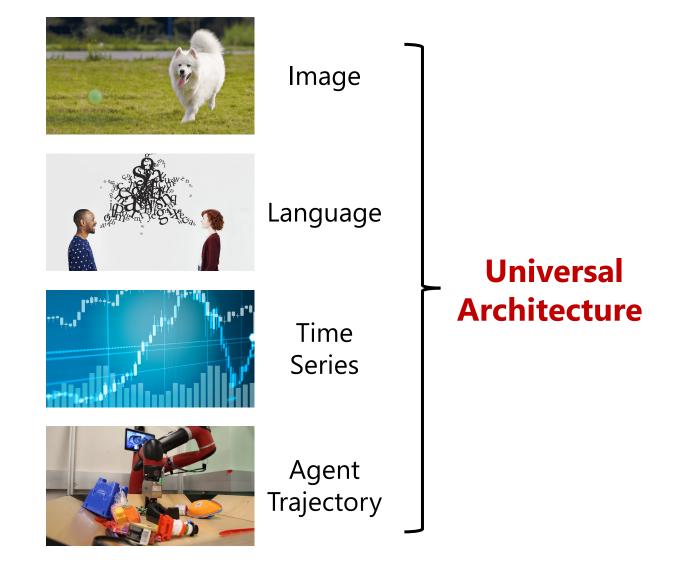
Flowformer: Linearizing Transformers with Conservation Flows

Haixu Wu 1 Jialong Wu 1 Jiehui Xu 1 Jianmin Wang 1 Mingsheng Long 1

Foundation Models

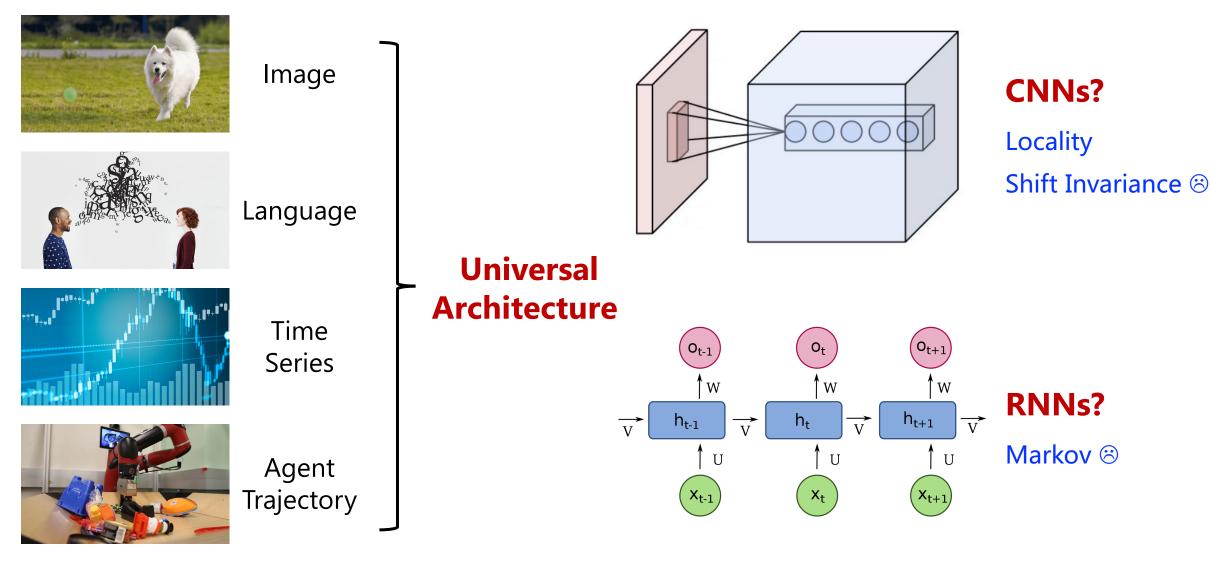
[Data Universal]

Learn from various modalities

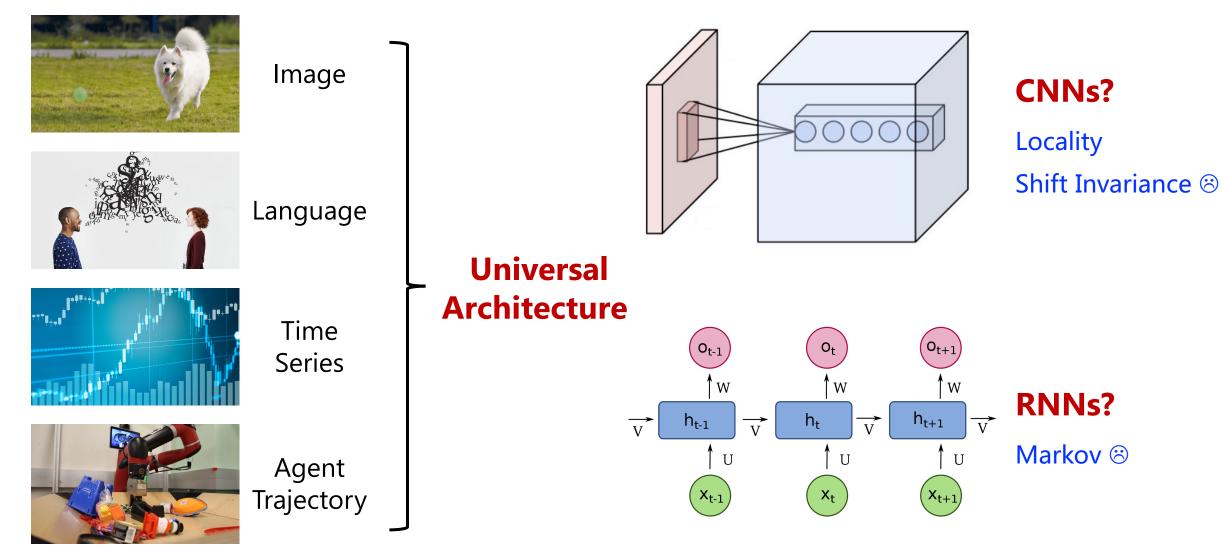

[Task Universal]

Adapt to a wide range of downstream tasks

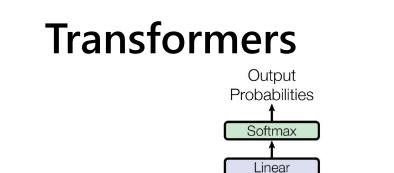
Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.



A Universal Architecture for General Proposes



A Universal Architecture for General Proposes



A Universal Architecture for General Proposes

Specific Inductive Biases Limit the Model Universality

Add & Norm

Feed

Forward

Add & Norm

Multi-Head

Attention

Input

Embedding

Inputs

N×

Positional

Encoding

Add & Norm

Feed Forward

Add & Norm

Multi-Head

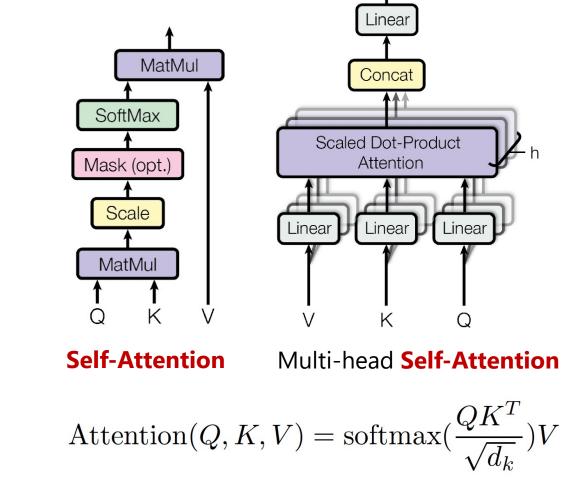
Attention

Add & Norm

Masked

Multi-Head

Attention

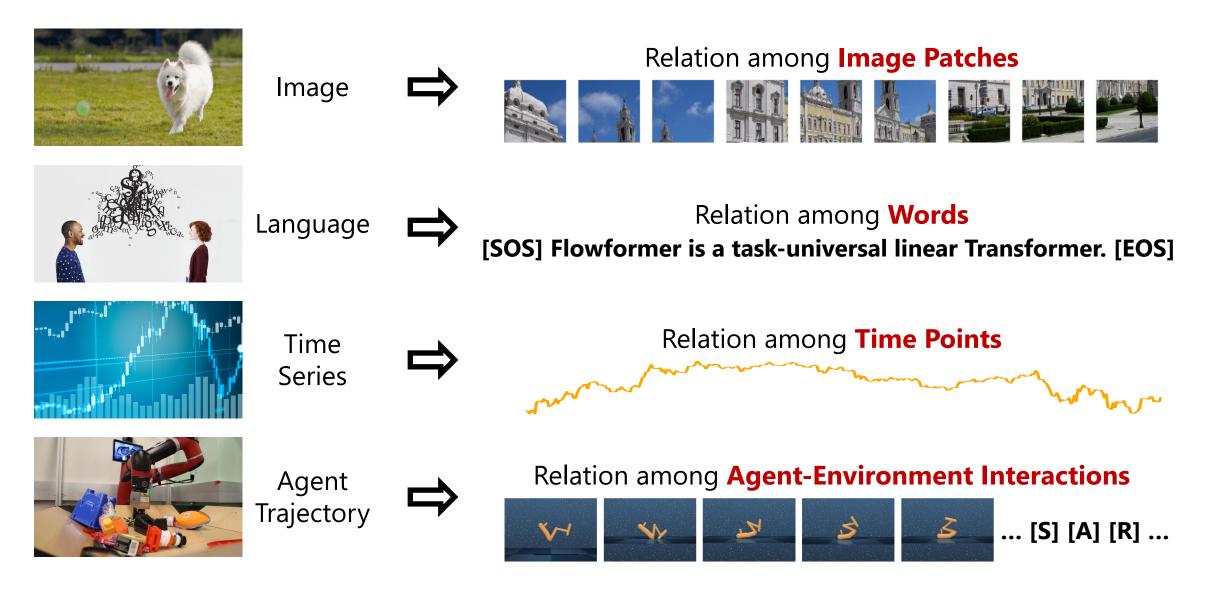

Output

Embedding

Outputs (shifted right) N×

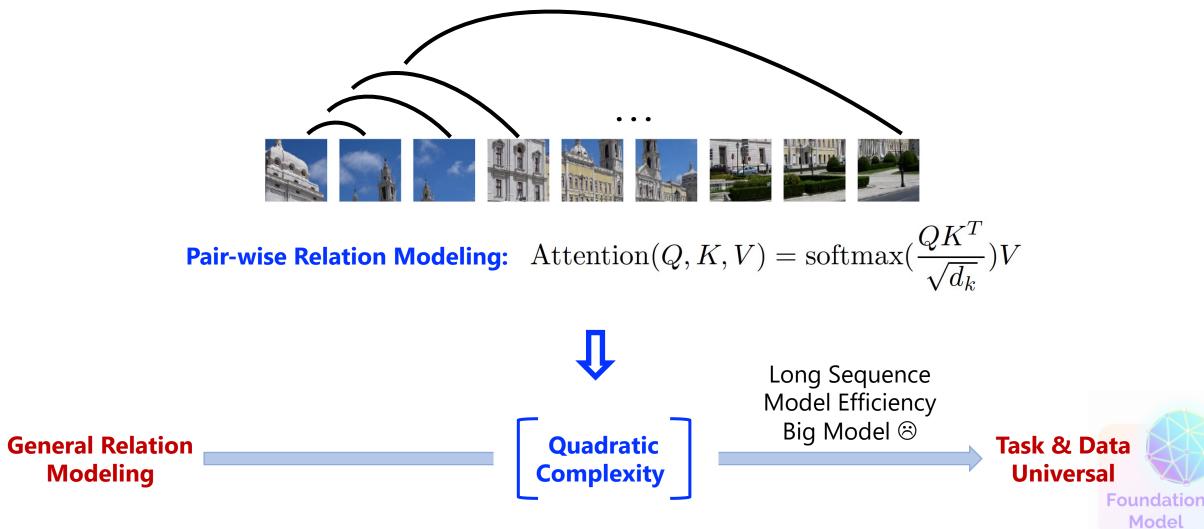
Positional

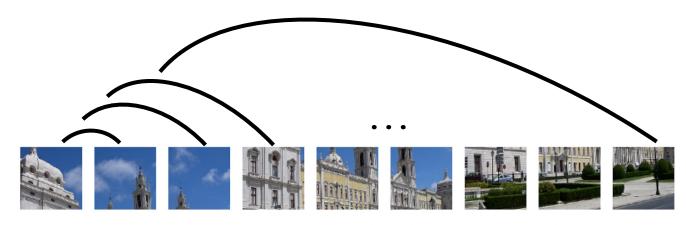
Encoding



Dot-product Similarity & Without Specific Inductive Biases

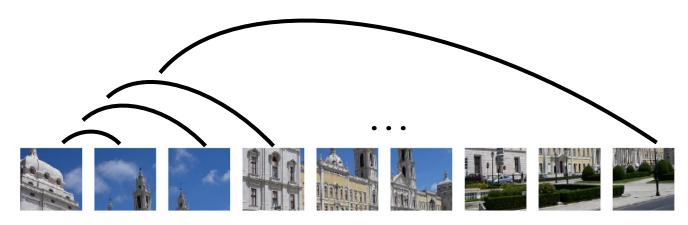
Vaswani et al. Attention is All you Need. NeurIPS 2017.


General Relation Modeling



Quadratic Complexity in Self-Attention

Quadratic Complexity in Self-Attention

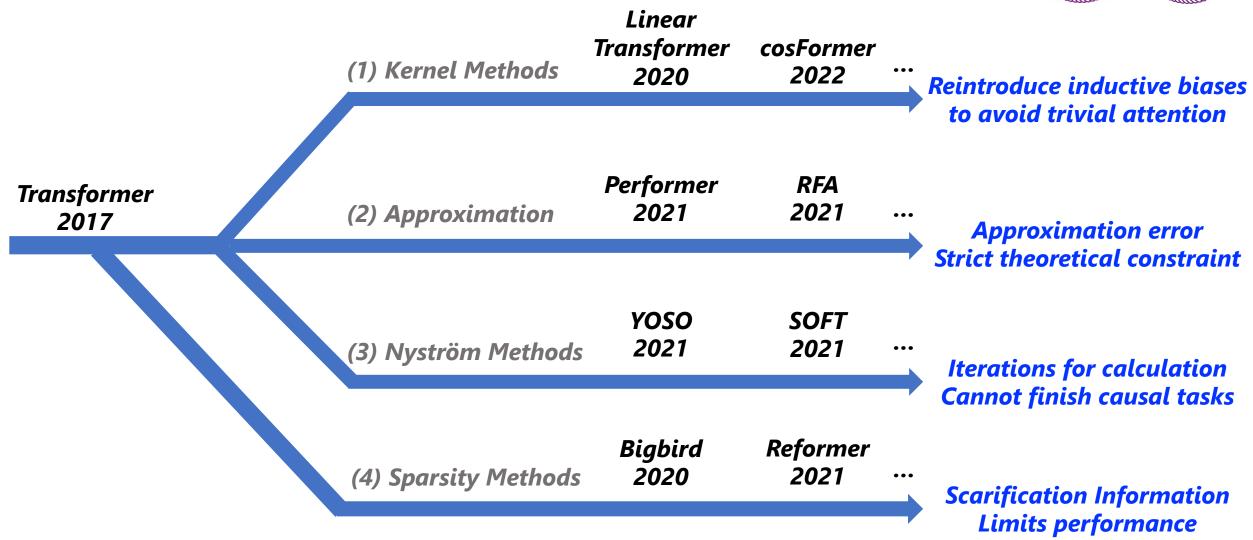


Pair-wise Relation Modeling: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$

 $\mathcal{O}(n^2d)$

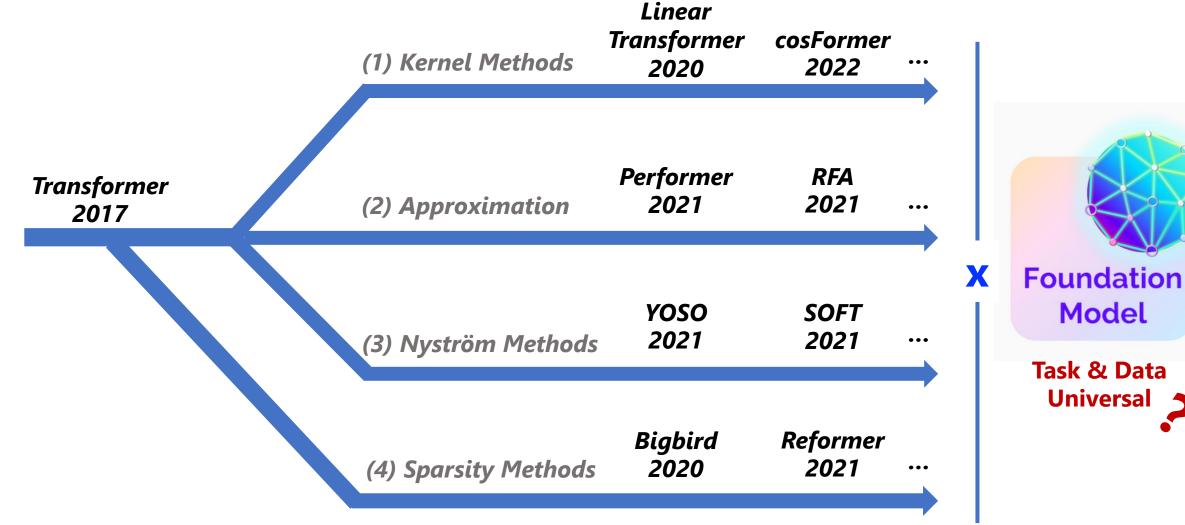
Quadratic Complexity in Self-Attention

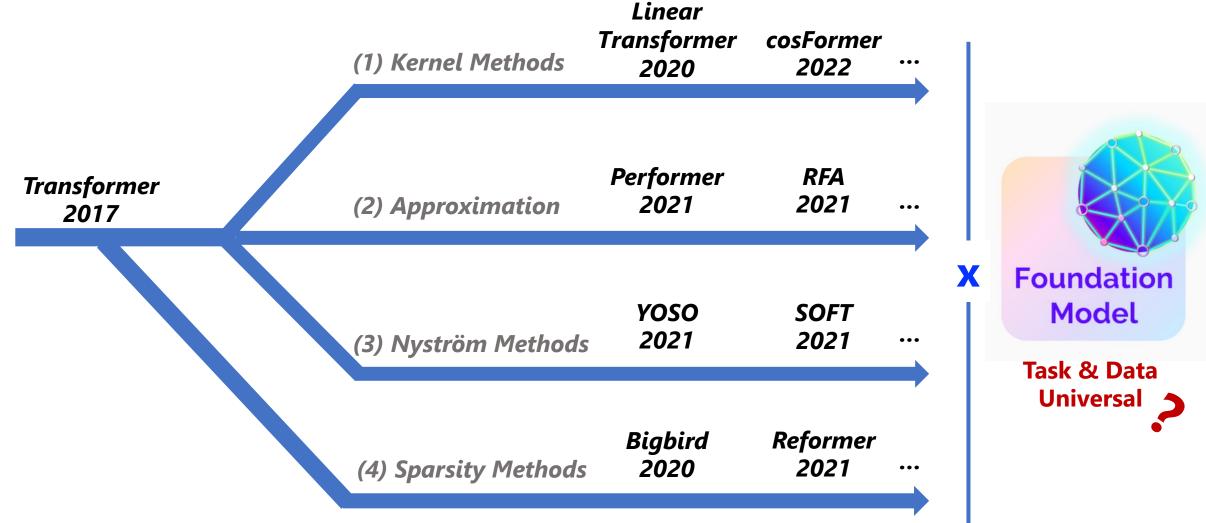
Pair-wise Relation Modeling: Attention $(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$


 $O(n^2d)$

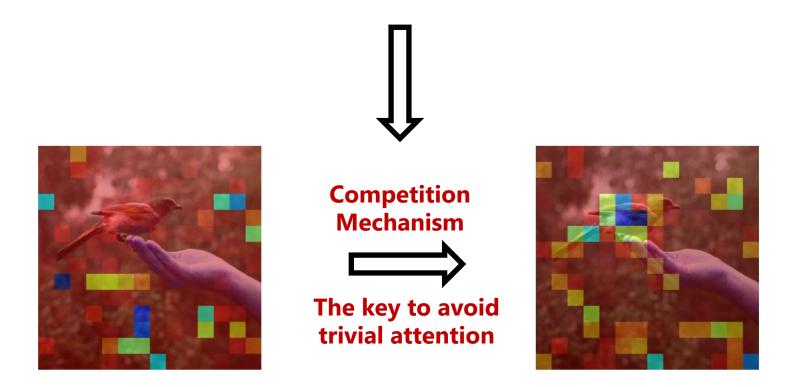
Can we remove Softmax function?

 $(QK^T)V = Q(K^TV) \implies \mathcal{O}(n^2d) \to \mathcal{O}(nd^2)$


Linear Transformers


Linear Transformers

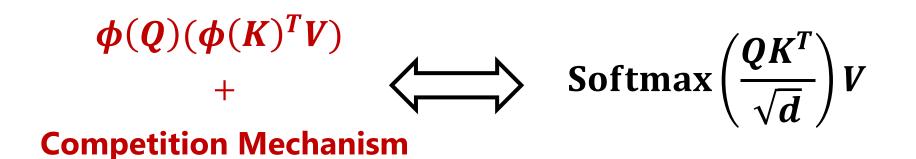
Linear Transformers



How to achieve the linear complexity and maintain the universality simultaneously?

Recap: Softmax Function

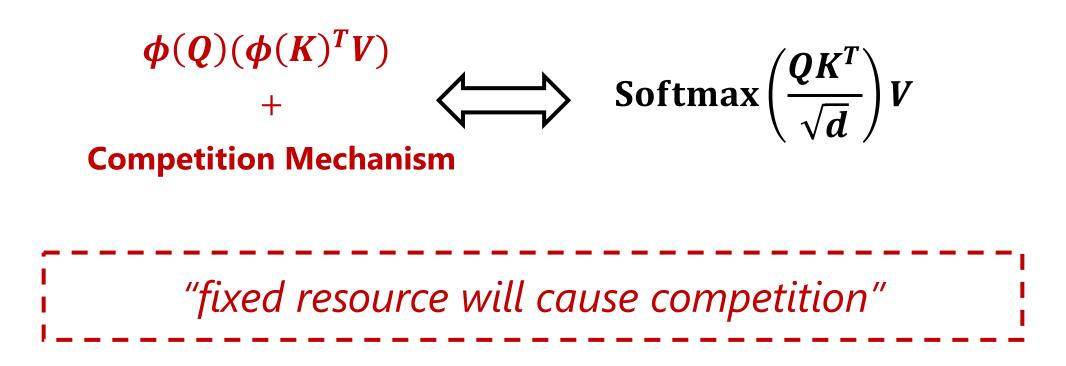
Softmax function is proposed as a differentiable generalization of the "*winner-take-all*" picking maximum operation.



Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. *NeurIPS 1989.*

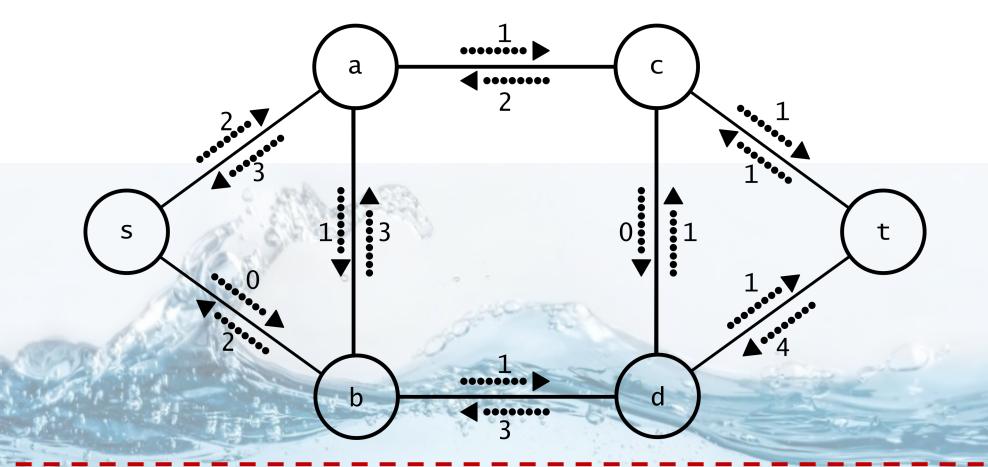
Recap: Softmax Function

Softmax function is proposed as a differentiable generalization of the *"winner-take-all"* picking maximum operation.

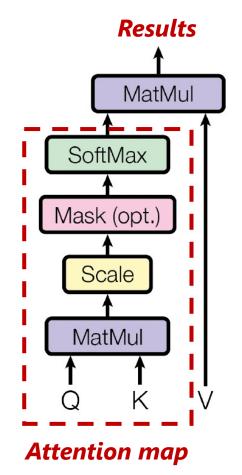


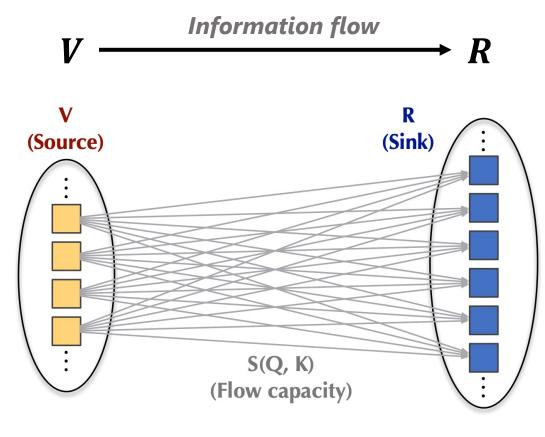
Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. *NeurIPS 1989.*

Recap: Softmax Function


Softmax function is proposed as a differentiable generalization of the *"winner-take-all"* picking maximum operation.

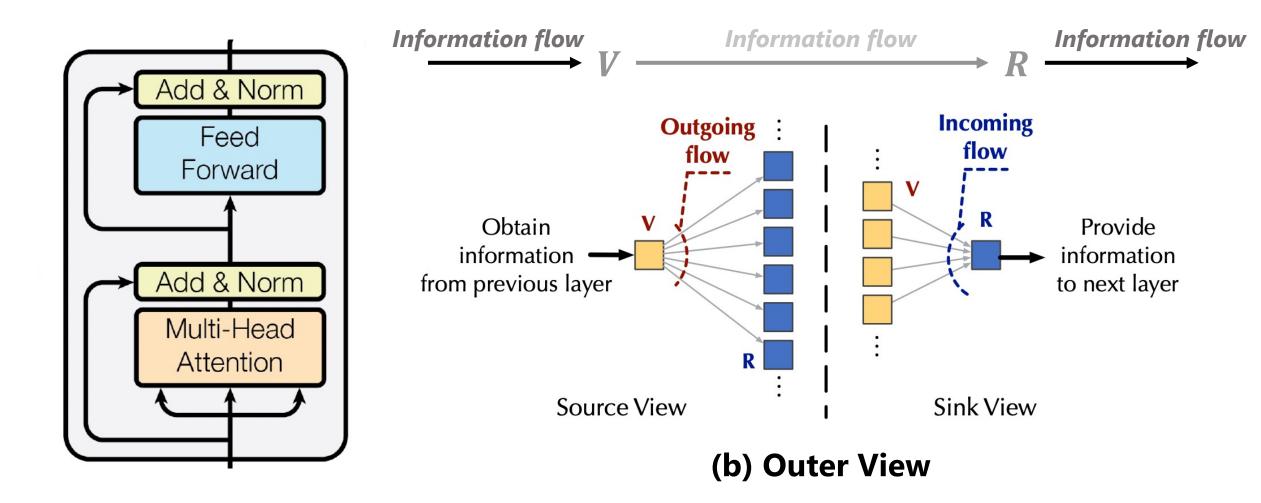
Bridle et al. Training stochastic model recognition algorithms as networks can lead to maximum mutual information estimation of parameters. *NeurIPS 1989.*


Flow Network Theory



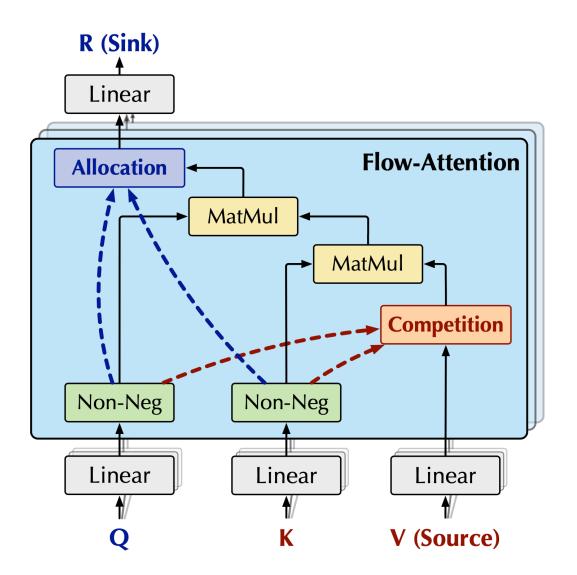
[Conservation Property]: The incoming flow capacity of each node is equal to the outgoing flow.

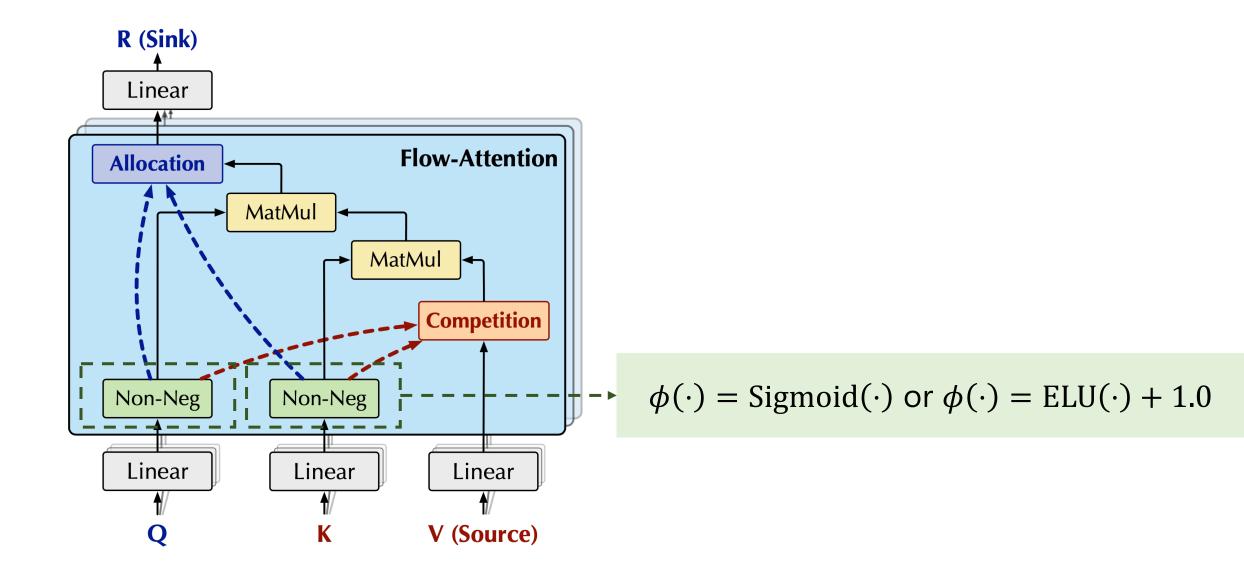
Attention: A Flow Network View

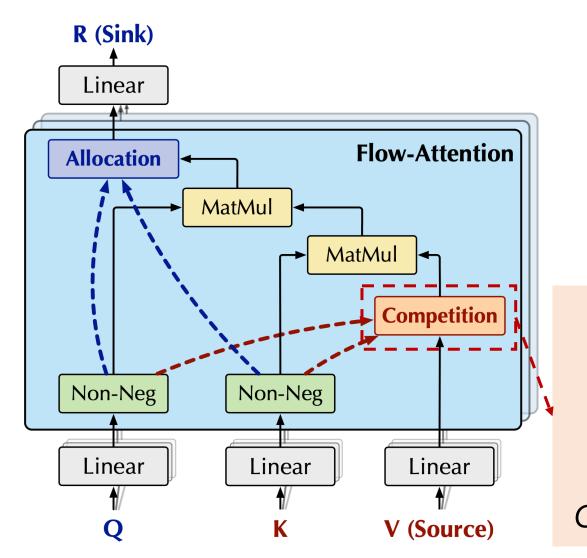


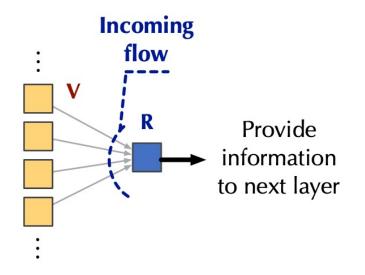
(a) Inner View

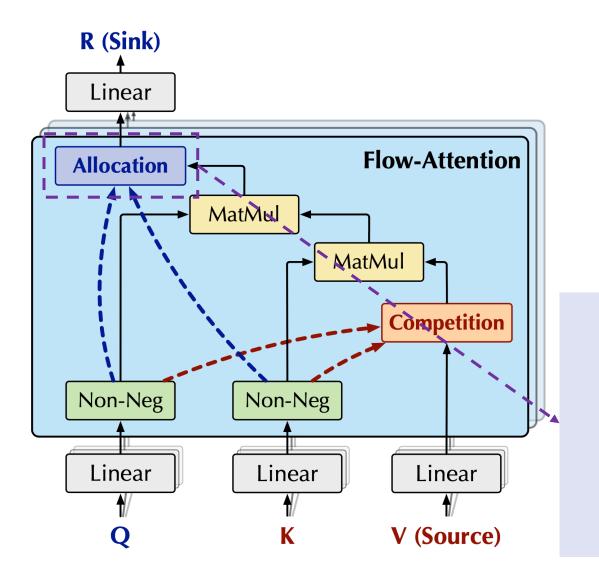
Attention: A Flow Network View

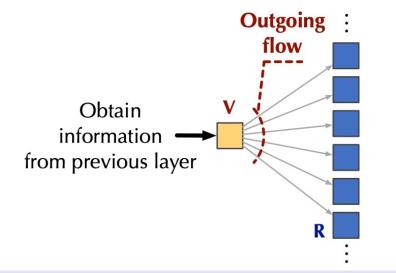

Conservation in Attention


[Incoming Flow Conservation]: Competition among Source tokens


[Outgoing Flow Conservation]: Competition among Sink tokens

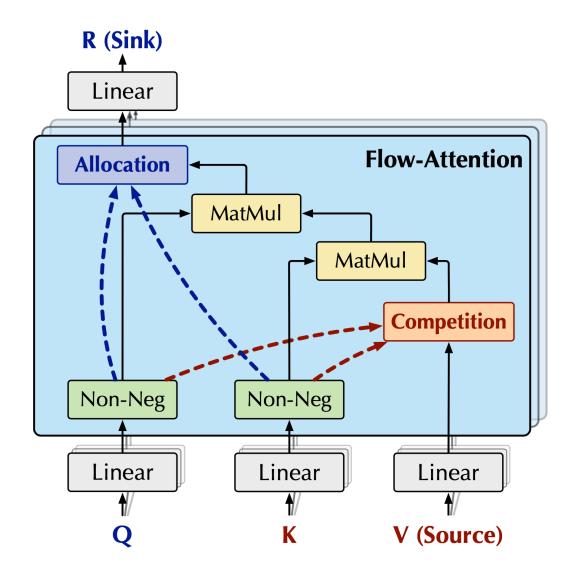




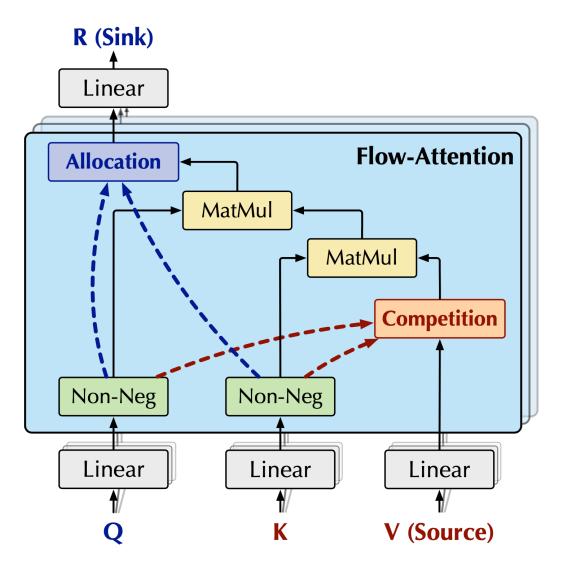

Incoming flow: $I_i = \phi(Q_i) \sum_j \phi(K_j)^T$

Incoming flow conservation: $\frac{\phi(Q)}{I}$

Conserved outgoing flow: $\widehat{\mathbf{O}} = \phi(\mathbf{K}) \sum_{i} \frac{\phi(Q_i)^T}{I_i}$



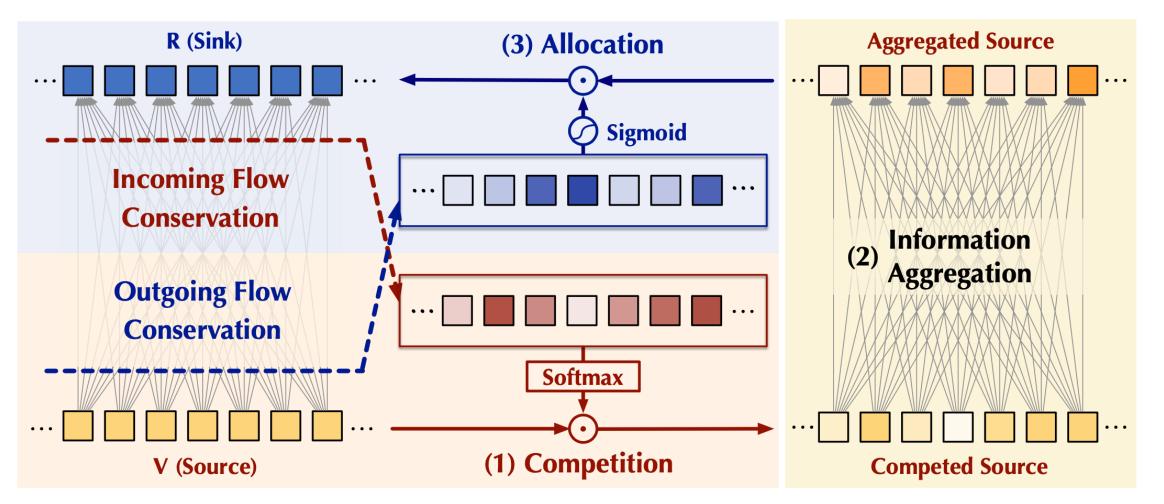
Outgoing flow: $O_i = \phi(K_i) \sum_j \phi(Q_j)^T$


Outgoing flow conservation: $\frac{\phi(K)}{O}$

Conserved incoming flow: $\hat{I} = \phi(Q) \sum_{J} \frac{\phi(K_{j})^{T}}{O_{T}}$

Competition:
$$\widehat{\mathbf{V}} = \operatorname{Softmax}(\widehat{\mathbf{O}}) \odot \mathbf{V}$$

Aggregation: $\mathbf{A} = \frac{\phi(\mathbf{Q})}{\mathbf{I}} (\phi(\mathbf{K})^{\mathsf{T}} \widehat{\mathbf{V}})$
Allocation: $\mathbf{R} = \operatorname{Sigmoid}(\widehat{\mathbf{I}}) \odot \mathbf{A}$,



Competition:
$$\widehat{\mathbf{V}} = \operatorname{Softmax}(\widehat{\mathbf{O}}) \odot \mathbf{V}$$

Aggregation: $\mathbf{A} = \frac{\phi(\mathbf{Q})}{\mathbf{I}} (\phi(\mathbf{K})^{\mathsf{T}} \widehat{\mathbf{V}})$
Allocation: $\mathbf{R} = \operatorname{Sigmoid}(\widehat{\mathbf{I}}) \odot \mathbf{A}$,

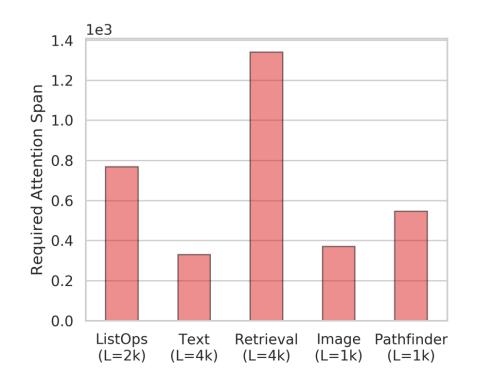
Successfully bring the <u>Competition Mechanism</u> Into Attention design to avoid trivial attention

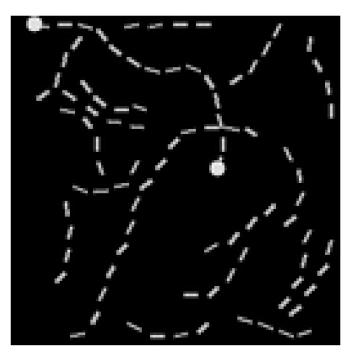
Efficiency and Universality

[Efficiency]: All the calculations are in linear complexity.

[Universality]: The whole design is based on flow network **without specific inductive biases.**

Flowformer Experiments




BENCHMARKS	ΤΑSΚ	VERSION	LENGTH
LRA (2020C)	SEQUENCE	NORMAL	1000~4000
WIKITEXT (2017)	LANGUAGE	CAUSAL	512
IMAGENET (2009)	VISION	NORMAL	49~3136
UEA (2018)	TIME SERIES	NORMAL	29~1751
D4RL (2020)	OFFLINE RL	CAUSAL	60

- Extensive tasks (covering 5 mainstream tasks)
- Normal and causal versions
- Various sequence lengths (29-4000)
- Extensive baselines (20+)

Long Sequence Modeling on LRA

Long sequence dataset with interesting tasks

Example 1: Pathfinder

INPUT: [MAX 4 3 [MIN 2 3] 1 0 [MEDIAN 1 5 8 9, 2]] **OUTPUT:** 5

Example 2: Listops

https://github.com/google-research/long-range-arena

Long Sequence Modeling on LRA

						<u> </u>
Model	$ $ ListOps \uparrow	Text \uparrow	Retrieval \uparrow	Image \uparrow	Pathfinder \uparrow	Avg ↑
LOCAL ATTENTION (TAY ET AL., 2021)	15.82	52.98	53.39	41.46	66.63	46.06
LINEAR TRANS. (KATHAROPOULOS ET AL., 2020)	16.13	65.90	53.09	42.34	75.30	50.55
REFORMER (KITAEV ET AL., 2020)	37.27	56.10	53.40	38.07	68.50	50.67
SPARSE TRANS. (CHILD ET AL., 2019)	17.07	63.58	59.59	44.24	71.71	51.24
SINKHORN TRANS. (TAY ET AL., 2020B)	33.67	61.20	53.83	41.23	67.45	51.29
LINFORMER (WANG ET AL., 2020)	35.70	53.94	52.27	38.56	76.34	51.36
PERFORMER (CHOROMANSKI ET AL., 2021)	18.01	65.40	53.82	42.77	77.05	51.41
SYNTHESIZER (TAY ET AL., 2020A)	36.99	61.68	54.67	41.61	69.45	52.88
LONGFORMER (BELTAGY ET AL., 2020)	35.63	62.85	56.89	42.22	69.71	53.46
TRANSFORMER (VASWANI ET AL., 2017)	36.37	64.27	57.46	42.44	71.40	54.39
BIGBIRD (ZAHEER ET AL., 2020)	36.05	64.02	59.29	40.83	74.87	55.01
COSFORMER (ZHEN ET AL., 2022)	<u>37.90</u>	63.41	61.36	43.17	70.33	55.23
FLOWFORMER W/O COMPETITION	36.80	63.48	61.66	42.39	71.90	55.25
FLOWFORMER W/O ALLOCATION	37.00	63.78	61.33	42.52	73.26	<u>55.58</u>
FLOWFORMER	38.70	64.29	62.24	<u>43.20</u>	73.95	56.48

State-of-the-art performance (Avg Acc 56.48%)

Ablation study to verify model effectiveness

Long Sequence Modeling on LRA

MODEL SPEED	INFERE	ENCE (STI	EPS PER S	ECOND)	TRAI	AIN (STEPS PER SECOND)			
SEQUENCE LENGTH	1K	2K	3K	4K	1K	2K	3K	4K	
TRANSFORMER (VASWANI ET AL., 2017)	81.83	25.26	-	-	22.12	7.50	-	-	
LOCAL ATTENTION (TAY ET AL., 2021)	98.28	96.51	94.60	95.60	46.75	43.05	35.42	30.34	
LINEAR TRANS. (KATHAROPOULOS ET AL., 2020)	97.33	96.14	94.03	93.69	48.66	48.78	<u>41.66</u>	35.44	
REFORMER (KITAEV ET AL., 2020)	60.92	60.30	39.37	26.98	46.07	22.93	14.34	9.56	
Sparse Trans. (Child et al., 2019)	78.30	23.33	-	-	21.74	7.30	-	-	
SINKHORN TRANS. (TAY ET AL., 2020B)	91.42	92.21	92.72	80.67	45.93	36.21	28.11	23.83	
LINFORMER (WANG ET AL., 2020)	96.56	96.84	94.74	93.59	45.57	44.11	37.28	31.58	
PERFORMER (CHOROMANSKI ET AL., 2021)	99.60	96.80	96.52	96.42	47.34	48.30	41.00	36.14	
Synthesizer (Tay et al., 2020a)	65.44	-	-	-	5.16	-	-	-	
LONGFORMER (BELTAGY ET AL., 2020)	73.56	-	-	-	13.09	-	-	-	
BIGBIRD (ZAHEER ET AL., 2020)	82.50	54.12	37.83	29.34	27.34	16.95	12.00	9.33	
COSFORMER (ZHEN ET AL., 2022)	96.46	95.58	95.19	94.69	46.50	45.24	39.49	35.09	
FLOWFORMER	98.83	96.21	<u>95.65</u>	<u>95.82</u>	49.76	47.18	41.93	36.79	

High efficiency (comparable to **Performer**)

State-of-the-art performance (56.48 v.s. 51.41)

Language Modeling on Wikitext-103

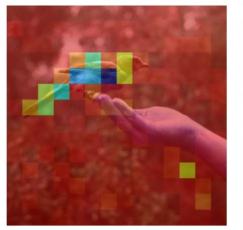
Model	Perplexity \downarrow
TRANSFORMER (2017)	33.0
LINEAR TRANS. (2020)	38.4
Reformer (2020)	33.6
Performer (2021)	37.5
TRF-TRANSFORMER (2021)	33.6
TRF-TRANSFORMER-GATE (2021)	31.3
COSFORMER (2022)	34.1
FLOWFORMER W/O COMPETITION	31.2
FLOWFORMER W/O ALLOCATION	32.2
FLOWFORMER	30.8

Strong performance in **causal task**

Vision Recognition on ImageNet-1K

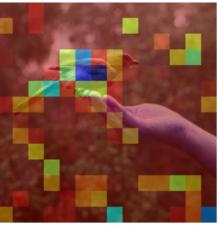
MODEL	COMPLEX.	PARAMS	S FLOPS	TOP-1	Top-5	
WIODEL	COMPLEX.	(MB)	(G)	ACC.	Acc.	
VIT-BASE (2021)	$\mathcal{O}(n^2 d)$	86	55.4	77.9	/	
VIT-LARGE (2021)	$\mathcal{O}(n^2 d)$	307	190.7	76.5	/	
Full Attn. (2017)	$\mathcal{O}(n^2 d)$	41	6.7	78.7	94.3	
LINEAR TRANS. (2020)	$\mathcal{O}(nd^2)$	41	6.3	79.0	94.1	
Reformer (2020)	$\mathcal{O}\left((n\log n)d ight)$	37	6.0	79.6	94.7	
Longformer (2020)	$\mathcal{O}(nd^2)$	38	6.3	77.6	93.1	
Performer (2021)	$\mathcal{O}(nd^2)$	41	6.3	78.1	93.2	
Nyströmformer (2021)	$\mathcal{O}(nd^2)$	41	6.3	77.2	93.0	
YOSO-E (2021)	$\mathcal{O}(nd^2)$	41	5.8	79.0	94.3	
SOFT (2021)	$\mathcal{O}(nd^2)$	37	5.8	79.2	94.5	-
COSFORMER (2022)	$\mathcal{O}(nd^2)$	41	6.3	68.3	88.0	Surpass pre
FLOWFORMER	$\mathcal{O}(nd^2)$	41	6.3	80.6	94.9	
DEIT-S (2021)	$\mathcal{O}(n^2 d)$	22	4.6	79.8	95.0	Speed up v
DEIT+FLOWFORMER	$\mathcal{O}(nd^2)$	22	4.2	80.0	94.8	Transforme

Surpass previous attentions


Speed up well-designed Transformers

Vision Recognition on ImageNet-1K


Input Frame (Bird)


Flowformer (Ours)

Input Frame (Birdhouse)

Flowformer (Ours)

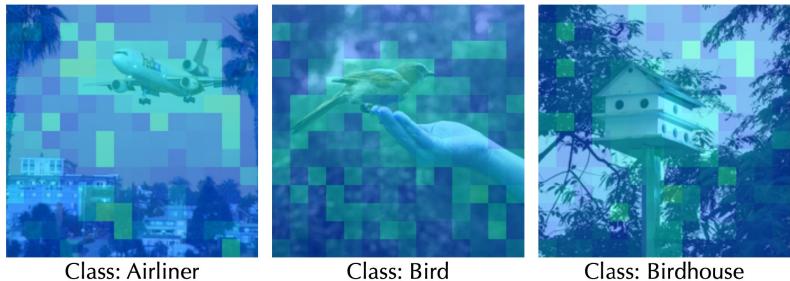
Canonical Transformer

Canonical Transformer

Linear Transformer

Linear Transformer

cosFormer



cosFormer

Flowformer can naturally visualize the attention map $Softmax(\hat{O})$

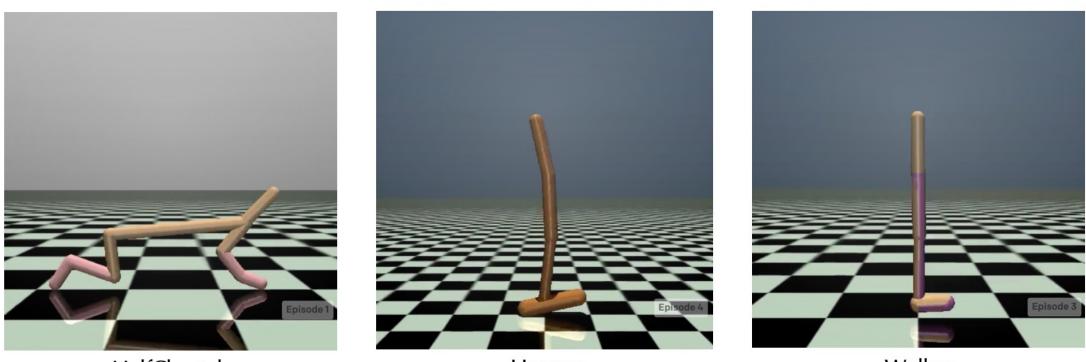
Vision Recognition on ImageNet-1K

Class: Airliner

Class: Birdhouse

Visualization of the allocation weights Sigmoid(\hat{I})

Time Series Classification on UEA


	CLASS	SICAL MI	ETHODS				Ι	DEEP N	I ODELS					
DATASET / MODEL				RNN	TCN		TRAN	NSFOR	MER AN	d its I	Efficien	t Varia	ANTS	ı
		XGBoost									YOSO-E			FLOW.
	(1994)	(2016)	(2020)	(1997)	(2019)	(2017)	(2020)	(2020))(2020)	(2021)) (2021)	(2021)	(2022)	(OURS)
ETHANOLCONCENTRATION	32.3	43.7	45.2	32.3	28.9	32.7	31.9	31.9	32.3	31.2	31.2	32.3	33.5	33.8
FACEDETECTION	52.9	63.3	64.7	57.7	52.8	67.3	67.0	68.6	62.6	67.0	67.3	64.8	67.1	67.6
HANDWRITING	28.6	15.8	58.8	15.2	53.3	32.0	34.7	27.4	39.6	32.1	30.9	28.9	34.7	33.8
Heartbeat	71.7	73.2	75.6	72.2	75.6	76.1	76.6	77.1	78.0	75.6	76.5	77.1	75.6	77.6
JAPANESEVOWELS	94.9	86.5	96.2	79.7	98.9	98.7	99.2	97.8	98.9	98.1	98.6	98.3	99.2	98.9
PEMS-SF	71.1	98.3	75.1	39.9	68.8	82.1	82.1	82.7	83.8	80.9	85.2	83.2	80.9	83.8
SELFREGULATIONSCP1	77.7	84.6	90.8	68.9	84.6	92.2	92.5	90.4	90.1	91.5	91.1	91.1	91.8	92.5
SELFREGULATIONSCP2	53.9	48.9	53.3	46.6	55.6	53.9	56.7	56.7	55.6	56.7	53.9	55.0	55.6	56.1
SpokenArabicDigits	96.3	69.6	71.2	31.9	95.6	98.4	98.0	97.0	94.4	98.4	98.9	98.4	98.8	98.8
UWAVEGESTURELIBRARY	90.3	75.9	94.4	41.2	88.4	85.6	85.0	85.6	87.5	85.3	88.4	85.6	85.0	86.6
AVERAGE ACCURACY	67.0	66.0	<u>72.5</u>	48.6	70.3	71.9	72.4	71.5	72.0	71.9	72.2	71.5	72.2	73.0

Extensive **data types** and **comparing baselines**

The **only** deep model surpasses Rocket.

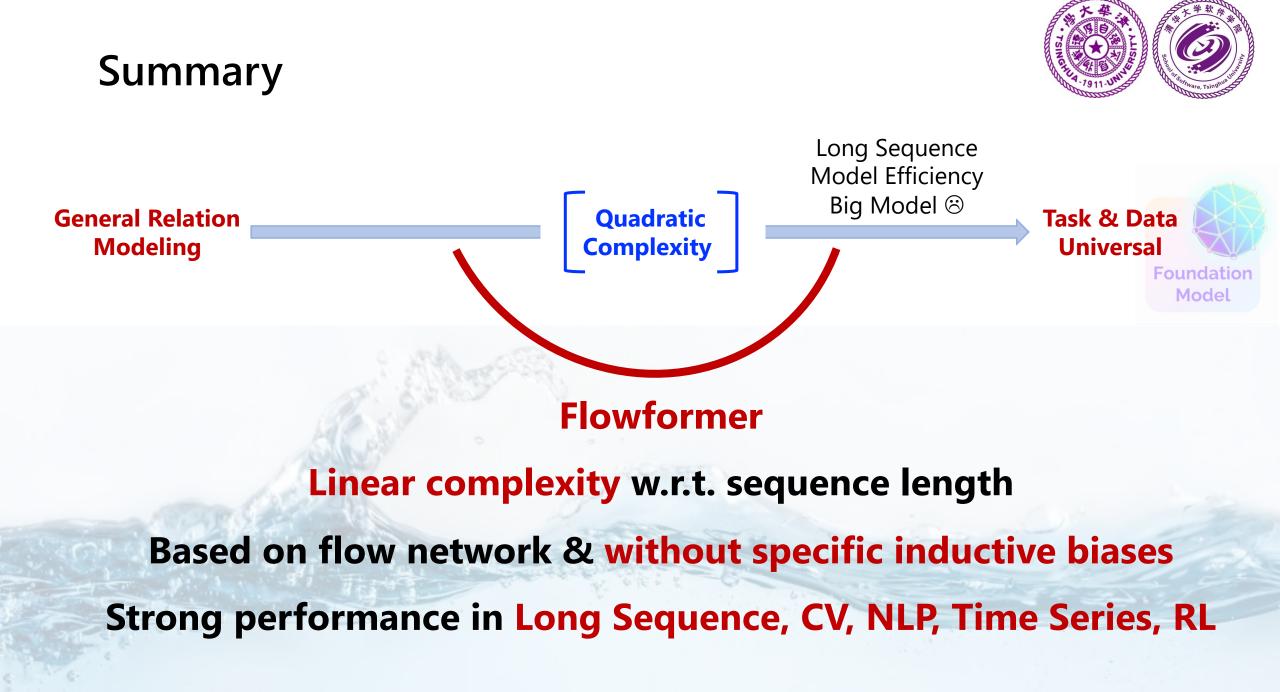
Offline Reinforcement Learning on D4RL

HalfCheetah

Hopper

Walker

Complex offline control task in the autoregressive protocol.



Offline Reinforcement Learning on D4RL

				•			(
Environment	BC (1989)	AWAC (2020)	DT (2021A)	LINEAR TRANS. (2020)	REFORMER (2020)	Performer (2021)	cosFormer (2022)	FLOWFORMER (OURS)
Medium-Expert								
HalfCheetah Hopper Walker	55.2 52.5 107.5	42.8 55.8 74.5	83.8 ± 3.3 104.0 ± 2.5 107.7 ± 0.6		$81.5{\pm}1.6$ 104.2 ${\pm}9.8$ 71.4 ${\pm}1.8$	85.1 ± 2.1 93.5 ± 13.9 72.6 ± 2.4	$85.5{\pm}2.9$ 98.1 ${\pm}7.4$ 100.5 ${\pm}14.5$	$\begin{array}{ c c c } 90.8 \pm 0.4 \\ 109.9 \pm 1.0 \\ 108.0 \pm 0.4 \end{array}$
Medium								
HalfCheetah Hopper Walker	42.6 52.9 75.3	43.5 57.0 72.4	$42.4{\pm}0.1$ $64.2{\pm}1.1$ $70.6{\pm}3.2$	42.3 ± 0.2 58.7 ± 0.4 57.9 ± 10.6	42.2 ± 0.1 59.9 ± 0.7 65.8 ± 4.9	42.1 ± 0.2 59.7 \pm 7.5 63.3 \pm 10.7	42.1 ± 0.3 59.8 ± 3.8 71.4 ± 1.2	$\begin{array}{c c} 42.2 \pm 0.2 \\ 66.9 \pm 2.5 \\ 71.7 \pm 2.5 \end{array}$
				MEDIUM-RI	EPLAY			
HALFCHEETAH Hopper Walker Avg Reward	36.6 18.1 26.0 51.9	40.5 37.2 27.0 50.1	$\begin{array}{r} 34.6 {\pm} 0.6 \\ 79.7 {\pm} 7.4 \\ 62.9 {\pm} 5.0 \end{array}$	$\begin{array}{r} 32.1 \pm 1.5 \\ 74.3 \pm 7.0 \\ 62.1 \pm 7.4 \\ 64.4 \pm 6.5 \end{array}$	$\begin{array}{r} 33.6 {\pm} 0.7 \\ 66.1 {\pm} 2.6 \\ 50.1 {\pm} 3.5 \\ \hline 63.9 {\pm} 2.9 \end{array}$	$\begin{array}{c} 31.7 {\pm} 0.9 \\ 64.6 {\pm} 24.2 \\ 61.3 {\pm} 6.7 \\ \hline 63.8 {\pm} 7.6 \end{array}$	32.8 ± 3.6 59.3 ± 16.5 60.5 ± 9.9 67.8 ± 7.6	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
				1				· -

Competitive performance in the comparison with *Decision Transformer*.

Chen et al. Decision Transformer: Reinforcement Learning via Sequence Modeling. NeurIPS 2021.

Open Source

thuml / Flowformer (Public)				☆ Edit Pins ▼ ③ Watch 6 ▼	°৺ Fork 3 🔶 Starred 41 👻			
<> Code 🕢 Issues 11 Pull red	quests 🕑 Actions 🖽 Projects	따 Wiki 🛈 Security 🗠 Insights 정	这 Settings					
	양 main - 양 1 branch ⊙ 0 ta	gs	Go to file Add file - Code -	About	鐐			
	wuhaixu2016 Update README.	md	3aa8fd1 2 days ago 🕥 56 commits	About Code release for "Flowformer: Linearizing Transformers with Conservation Flows" (ICML 2022),				
	Flowformer_CV	Update README.md	6 days ago	https://arxiv.org/pdf/2202.06258.pdf				
	Flowformer_LRA	Update README.md	10 days ago	🕮 Readme				
	Flowformer_RL	Update trajectory_gpt2.py	4 days ago	ৰাুঁ≱ MIT license				
	Flowformer_TimeSeries	Update README.md	10 days ago	 ☆ 41 stars ⊙ 6 watching 				
	pic	update RL readme	6 days ago	양 3 forks				
	🗋 .gitignore	Initial commit	16 days ago					
	Plow_Attention.py	Update Flow_Attention.py	5 days ago	Releases				
		Initial commit	16 days ago	No releases published				
	C README.md	Update README.md	2 days ago	Create a new release				
	i≣ README.md		P	Packages				
	Flowformer (IC	ML 2022)	No packages published Publish your first package					
	Flowformer: Linearizing Transfo	ormers with Conservation Flows	Contributors 2					
	quadratic complexity, significar	pressive success in various areas. Howev ntly impeding Transformers from dealing v linear complexity and task-universal fou ts:	wuhaixu2016					
	Without specific indcitve	quence length, can handle extermely long bias, purely derived from the flow networ	Languages					
	 Task-universal, showing s 	trong performance in Long sequence, V	ISION, NLP, Time series, KL.	• Python 98.7% • Shell 1.3%				

https://github.com/thuml/Flowformer

Complete benchmarks & datasets & scripts

Thank You! whx20@mails.tsinghua.edu.cn