

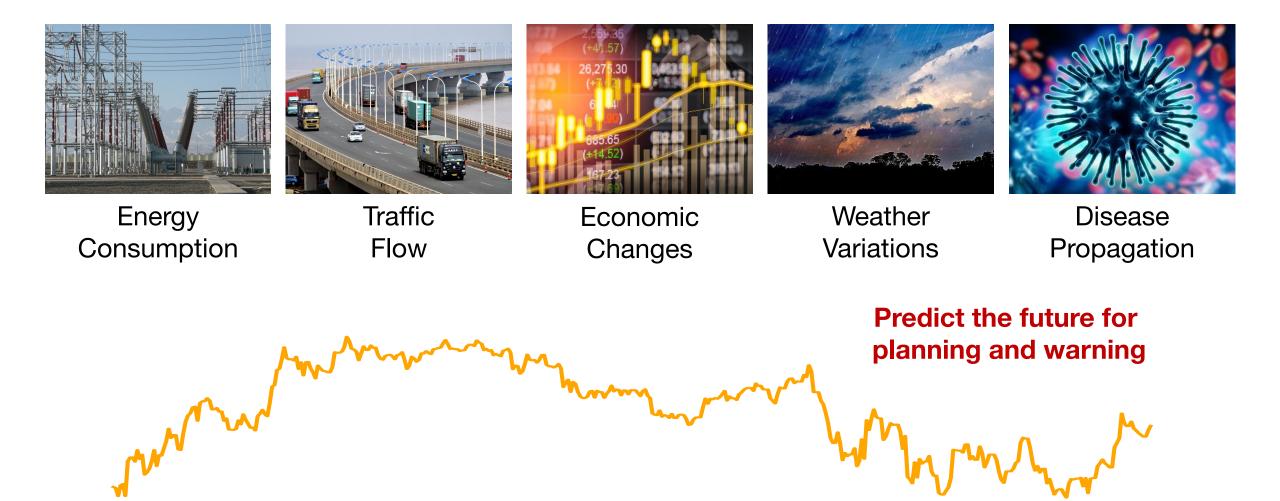
Published as a conference paper at ICLR 2024

TIMEMIXER: DECOMPOSABLE MULTISCALE MIXING FOR TIME SERIES FORECASTING

Shiyu Wang¹*Haixu Wu²*Xiaoming Shi¹, Tengge Hu², Huakun Luo², Lintao Ma^{1⊠}, James Y. Zhang¹, Jun Zhou^{1⊠} ¹Ant Group, Hangzhou, China ²Tsinghua University, Beijing, China {weiming.wsy,lintao.mlt,peter.sxm,james.z,jun.zhoujun}@antgroup.com, {wuhx23,htg21,luohk19}@mails.tsinghua.edu.cn

Time Series In Real World

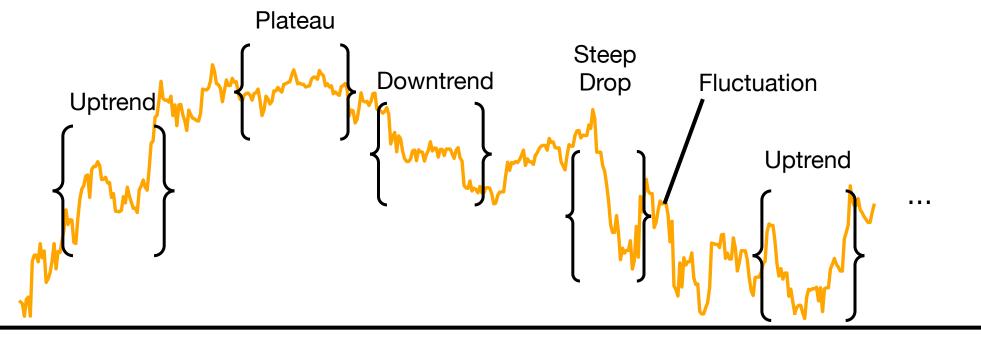
Energy Consumption


Traffic Flow

Changes

Weather Variations Disease Propagation

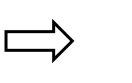
white


Time Series Forecasting

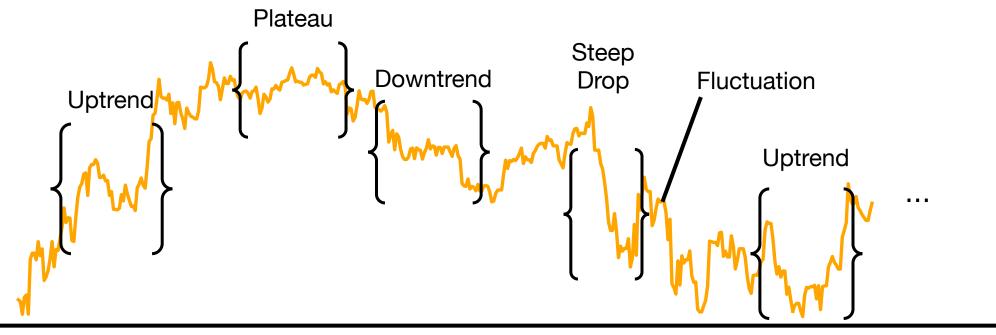
Intricate Temporal Variations

How to tackle intricate temporal variations?

- Decomposition: Autoformer (NeurIPS 2021)
- Multiperiodicity: TimesNet (ICLR 2023)


Past Observations

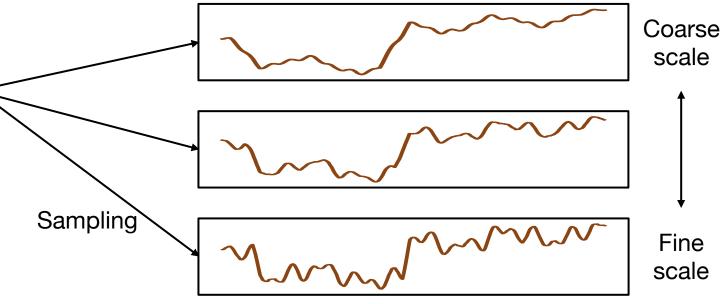
Future Time Series


Intricate Temporal Variations

How to tackle intricate temporal variations?

- Decomposition: Autoformer (NeurIPS 2021)
- Multiperiodicity: TimesNet (ICLR 2023)

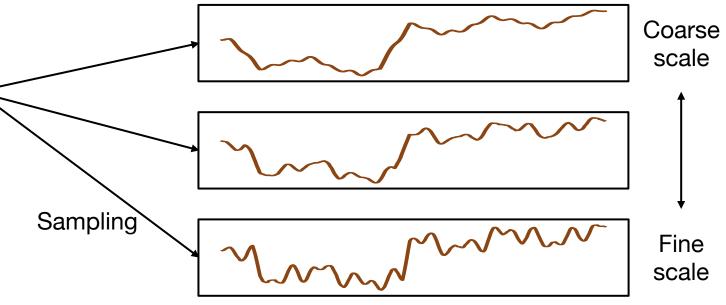
Multiscale Analysis (Our paper)


Past Observations

Multiscale Property of Time Series

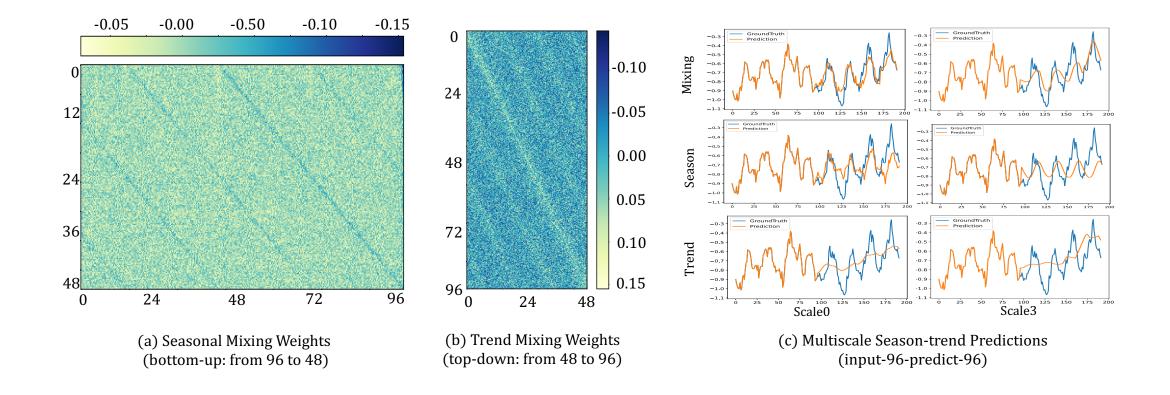
- ✓ Traffic: daily and weekly
- ✓ Weather: daily and yearly

Fine Variations: microscopic information


Coarse Variations: macroscopic information

Multiscale Property of Time Series

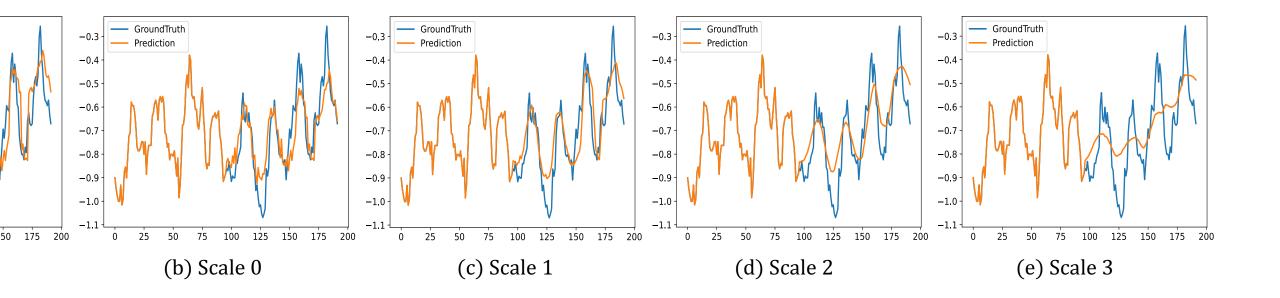
- ✓ Traffic: daily and weekly
- \checkmark Weather: daily and yearly

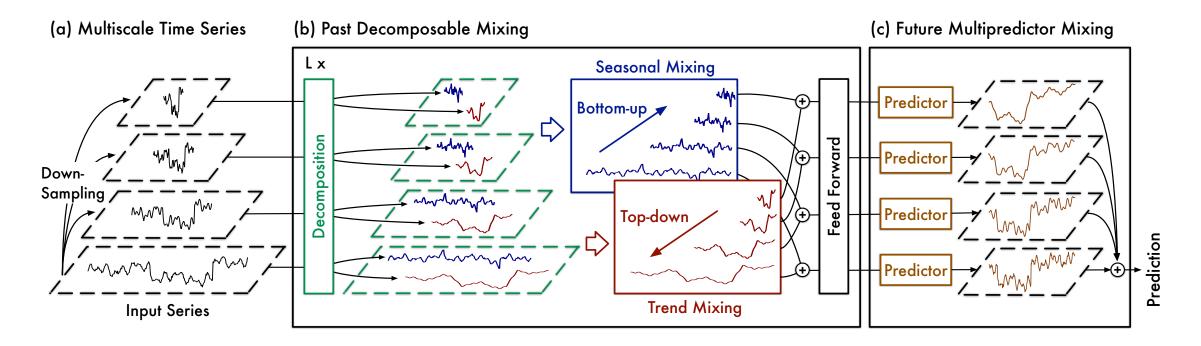

Fine Variations: microscopic information

Coarse Variations: macroscopic information

How to utilize these disentangled multiscale variations for forecasting?

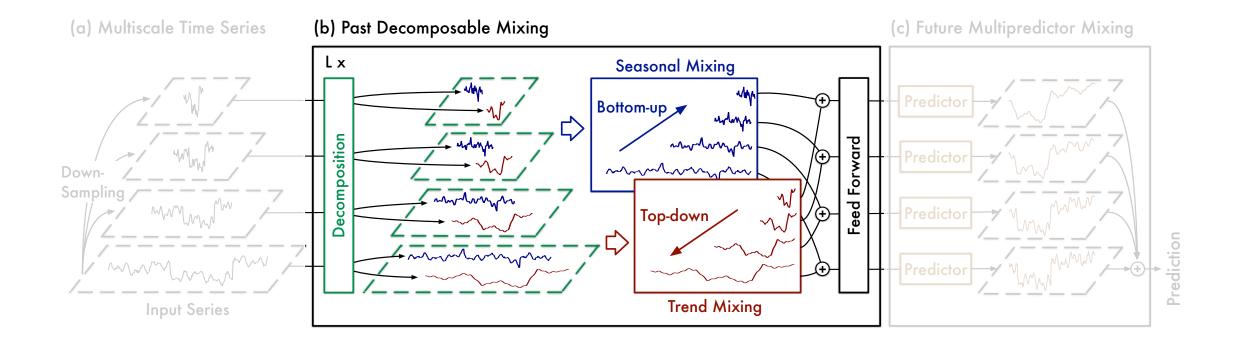
Observation 1: History Extraction


- Seasonal and trend parts present different mixing properties.
- Fine-scale seasonal and coarse-scale trend are essential.

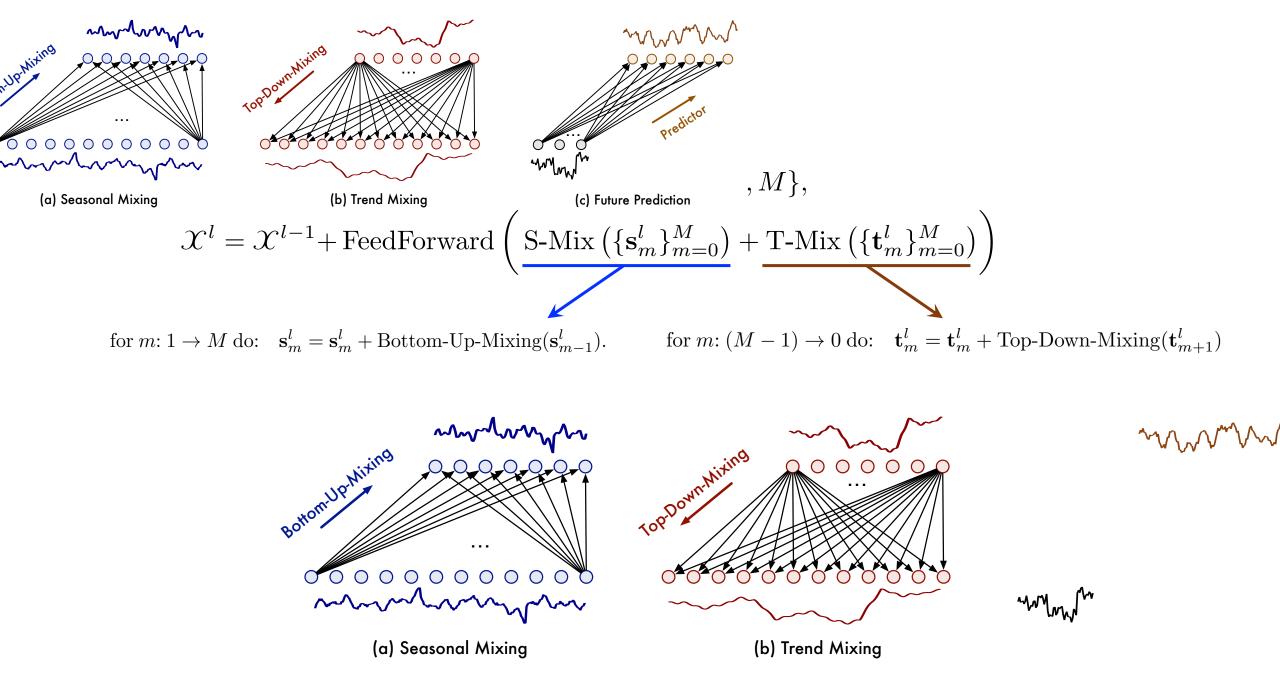

Observation 2: Future Prediction

> Future variation is jointly determined by multiscale past series.

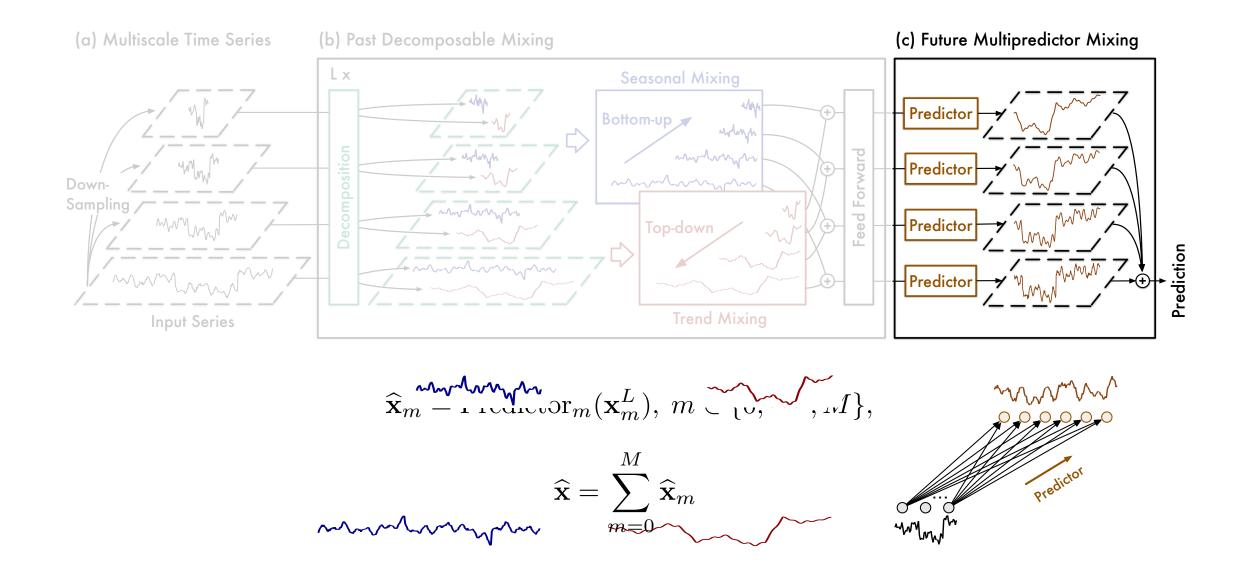
> Different scale present complementary forecasting capabilities.



Overall design of TimeMixer



- Past Decomposable Mixing for history extraction
- Future Multipredictor Mixing for future prediction


Past Decomposable Mixing

$$\mathbf{s}_{m}^{l}, \mathbf{t}_{m}^{l} = \text{SeriesDecomp}(\mathbf{x}_{m}^{l}), m \in \{0, \cdots, M\},$$
$$\mathcal{X}^{l} = \mathcal{X}^{l-1} + \text{FeedForward}\left(\text{S-Mix}\left(\{\mathbf{s}_{m}^{l}\}_{m=0}^{M}\right) + \text{T-Mix}\left(\{\mathbf{t}_{m}^{l}\}_{m=0}^{M}\right)\right)$$

Future Multipredictor Mixing

Experiment: Overall

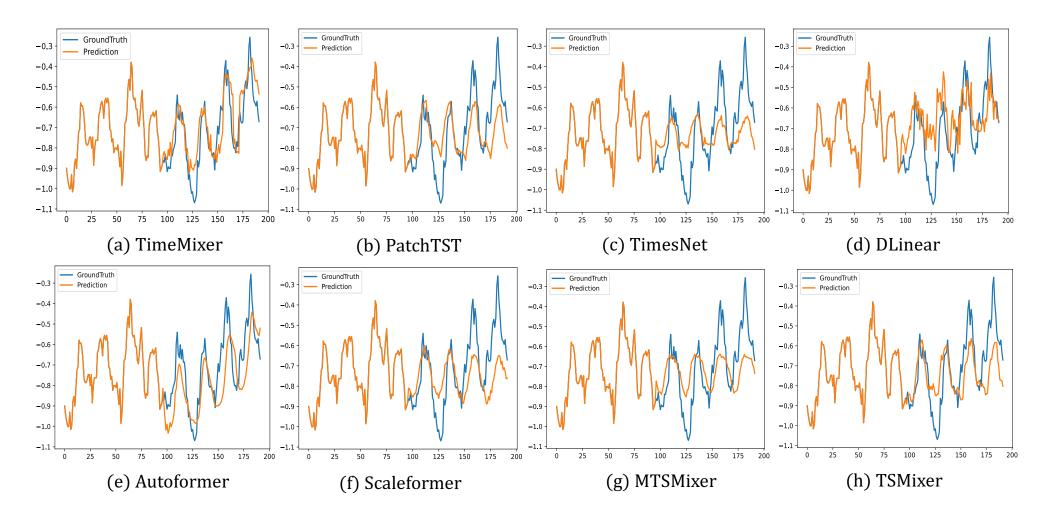
Tasks	Dataset	Variate	Predict Length	Frequency	Forecastability	Information
	ETT (4 subsets)	7	96~720	15 mins	0.46	Temperature
Long-term	Weather	21	96~720	10 mins	0.75	Weather
forecasting	Solar-Energy	137	96~720	10min	0.33	Electricity
	Electricity	321	96~720	Hourly	0.77	Electricity
	Traffic	862	96~720	Hourly	0.68	Transportation
Short-term	PEMS (4 subsets)	170~883	12	5min	0.55	Traffic network
forecasting	M4 (6 subsets)	1	6~48	Hourly~Yearly	0.47	Database

- ✓ 8 well-established benchmarks, 15+ baselines
- ✓ **Two Experiment Settings**: Unified & searched hyperparameter

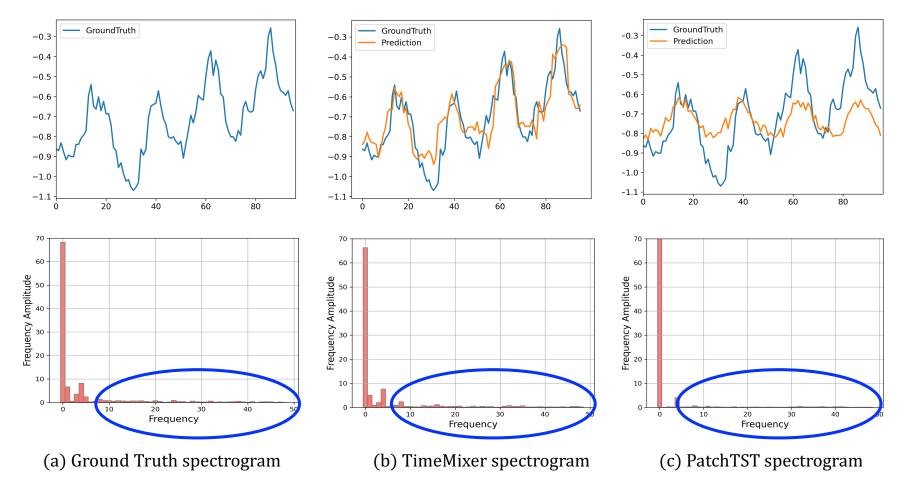
TimeMixer achieves consistent state-of-the-art in all benchmark and two settings

Unified Hyperparameter

TimeMixer > TimesNet > PatchTST

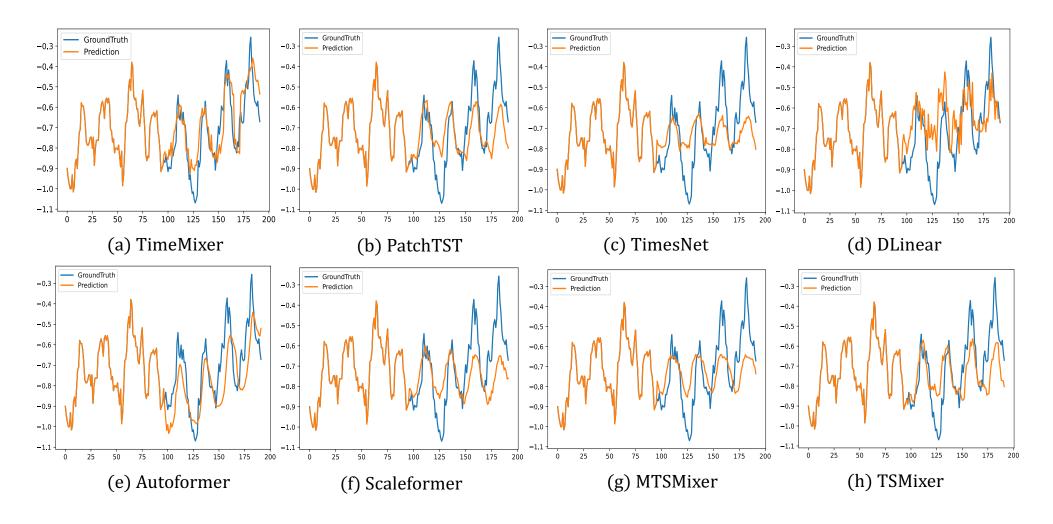

_												
Modei		TimeMixer (Ours)	PatchTST 2023	TimesNet 2023a	Crossformer 2023	MICN 2023	FiLM 2022a	DLinear 2023	FEDformer 2022b	Stationary 2022b	Autoformer 2021	Informer 2021
Metri		MSE MAE	ISE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
Weather	96 192 336 720	0.163 0.209 0 0.208 0.250 0 0.251 0.287 0 0.339 0.341 0	.234 0.265 .284 <u>0.301</u>	0.219 0.261 0.246 0.337	0.209 0.273 0.332	0.239 0.299 0.285 0.336	0.239 0.271 0.289 0.306	0.237 0.295 0.282 0.331	0.276 0.336 0.339 0.380	0.245 0.285 0.321 0.338	0.307 0.367 0.359 0.395	0.598 0.544 0.578 0.523
l	Avg	0.240 0.271	.265 <u>0.285</u>	<u>0.251</u> 0.294	0.264 0.320	0.268 0.321	0.271 0.291	0.265 0.315	0.309 0.360	0.288 0.314	0.338 0.382	0.634 0.548
Solar-Energy	96 192 336 720	0.189 0.259 0 0.222 0.283 0 0.231 0.292 0 0.223 0.285 0	.288 <u>0.332</u> .301 <u>0.339</u> .295 <u>0.336</u>	0.397 0.376 0.420 0.380 0.420 0.381	0.371 0.410 0.495 0.515 0.526 0.542	0.278 0.354 0.298 0.375 0.299 0.379	0.371 0.372 0.408 0.385 0.406 0.377	0.320 0.398 0.353 0.415 0.357 0.413	0.291 0.337 0.354 0.416 0.380 0.437	0.346 0.369 0.357 0.387 0.375 0.424	0.588 0.561 0.595 0.588 0.733 0.633	0.297 0.341 0.367 0.429 0.374 0.431
_	-	0.216 0.280 0										
Electricity	96 192 336 720	0.153 0.247 0 0.166 0.256 0 0.185 0.277 0 0.225 0.310 0	.199 0.304 .217 0.319	0.184 0.322 0.198 0.300	0.231 0.322 0.246 0.337	0.189 0.302 0.198 0.312	0.198 <u>0.278</u> 0.217 <u>0.300</u>	0.210 0.305 0.223 0.319	0.201 0.315 0.214 0.329	0.182 0.286 0.200 0.304	0.222 0.334 0.231 0.443	0.296 0.386 0.300 0.394
	Avg	0.182 0.272 0	216 0.318	0.193 0.304	0.244 0.334	0.196 0.309	0.223 0.302	0.225 0.319	0.214 0.327	0.193 0.296	0.227 0.338	0.311 0.397
Traffic	96 192 336 720	0.462 0.285 0 0.473 0.296 0 0.498 0.296 0 0.506 0.313 0	. <u>522</u> 0.332 . <u>517</u> 0.334	0.617 0.336 0.629 0.336	0.665 0.431 0.674 0.420	0.589 0.356 0.594 0.358	0.600 0.361 0.610 0.367	0.598 0.370 0.605 0.373	0.604 0.373 0.621 0.383	0.613 0.340 0.618 <u>0.328</u>	0.616 0.382 0.622 0.337	0.696 0.379 0.777 0.420
	Avg	0.484 0.297 0	. <mark>529</mark> 0.341	0.620 <u>0.336</u>	0.667 0.426	0.593 0.356	0.637 0.384	0.625 0.383	0.610 0.376	0.624 0.340	0.628 0.379	0.764 0.416
ETTh1	96 192 336 720	0.375 0.400 0 0.429 0.421 0 0.484 0.458 0 0.498 0.482 0	.512 0.477 .546 0.496	0.436 0.429 0.638 0.469	0.471 0.474 0.570 0.546	0.454 0.464 0.493 0.487	0.493 0.466 0.547 0.495	0.446 0.441 <u>0.489 0.467</u>	0.469 0.470 0.530 0.499	0.534 0.504 0.588 0.535	0.500 0.482 0.521 0.496	1.008 0.792 1.107 0.809
	Avg	0.447 0.440	516 0.484	0.495 <u>0.450</u>	0.529 0.522	0.475 0.480	0.516 0.483	0.461 0.457	0.498 0.484	0.570 0.537	0.496 0.487	1.040 0.795
ETTh2	96 192 336 720	0.289 0.341 0 0.372 0.392 0 0.386 0.414 0 0.412 0.434 0	. <u>393</u> 0.405 .427 0.436	0.402 0.414 0.452 0.452	0.877 0.656 1.043 0.731	0.492 0.492 0.607 0.555	0.404 0.414 0.435 0.445	0.482 0.479 0.591 0.541	0.429 0.439 0.496 0.487	0.512 0.493 0.552 0.551	0.456 0.452 0.482 0.486	5.602 1.931 4.721 1.835
	Avg	0.364 0.395 0	<u>391 0.411</u>	0.414 0.427	0.942 0.684	0.574 0.531	0.402 0.420	0.563 0.519	0.437 0.449	0.526 0.516	0.450 0.459	4.431 1.729
ETTm1	96 192 336 720	0.320 0.357 0 0.361 0.381 0 0.390 0.404 0 0.454 0.441 0	.390 0.393 .421 0.414	0.374 0.387 0.410 0.411	0.450 0.451 0.532 0.515	0.403 0.408 0.436 0.431	0.389 0.387 0.421 0.408	0.382 0.391 0.415 0.415	0.426 0.441 0.445 0.459	0.459 0.444 0.495 0.464	0.553 0.496 0.621 0.537	0.795 0.669 1.212 0.871
	Avg	0.381 0.395 0	406 0.407	0.400 0.406	0.513 0.495	0.423 0.422	0.411 0.402	0.404 0.408	0.448 0.452	0.481 0.456	0.588 0.517	0.961 0.734
ETTm2	96 192 336 720	0.175 0.258 0 0.237 0.299 0 0.298 0.340 0 0.391 0.396 0	.255 0.314 . <u>309</u> 0.347 .412 0.404	0.249 0.309 0.321 0.351 <u>0.408</u> 0.403	0.414 0.492 0.597 0.542 1.730 1.042	0.284 0.361 0.381 0.429 0.549 0.522	0.248 0.305 0.309 0.343 0.410 0.400	0.284 0.361 0.382 0.429 0.558 0.525	0.269 0.328 0.325 0.366 0.421 0.415	0.280 0.339 0.334 0.361 0.417 0.413	0.281 0.340 0.339 0.372 0.433 0.432	0.533 0.563 1.363 0.887 3.379 1.338
	Av	0.275 0.323	.290 0.334	0.291 0.333	0.757 0.610	0.353 0.402	0.287 0.329	0.354 0.402	0.305 0.349	0.306 0.347	0.327 0.371	1.410 0.810

Searched Hyperparameter


TimeMixer > PatchTST > DLinear

Mo	odel	S TimeMixer I	atchTST 2023	TimesNet 2023a	Crossforme 2023	er MICN 2023	FiLM 2022a	DLinear 2023	FEDformer 2022b	Stationary 2022b	Autoformer 2021	Informer 2021
Μ	etri	MSE MAE	ISE MAE	MSE MAE	MSE MAI	E MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
Weather	96 192 336 720	0.147 0.197 0 0.189 0.239 0 0.241 0.280 0 0.310 0.330 0	194 0.241 306 <u>0.282</u>	0.219 0.261 <u>0.246</u> 0.337	0.371 0.410 0.495 0.51	0 0.220 0.281 5 0.278 0.331	0.228 0.288 0.267 0.323	0.220 0.282 0.265 0.319	0.276 0.336 0.339 0.380	0.245 0.285 0.321 0.338	0.307 0.367 0.359 0.395	0.598 0.544 0.578 0.523
	Avş	0.222 0.262 0	241 <u>0.264</u>	0.251 0.294	0.406 0.442	2 0.242 0.299	0.253 0.309	0.246 0.300	0.309 0.360	0.288 0.314	0.338 0.382	0.634 0.548
Solar-Energy	96 192 336 720 Avg	0.167 0.220 0 0.187 0.249 0 0.200 0.258 0 0.215 0.250 0	253 0.298 273 0.306 272 0.308	0.231 0.322 0.246 0.337 0.280 0.363	0.196 0.25 0.216 0.24 0.220 0.25	2 0.215 0.280 3 0.222 0.267 6 0.226 0.264	0.360 0.362 0.398 0.375 0.399 0.368	0.319 0.397 0.352 0.415 0.356 0.412	0.237 0.337 0.254 0.362 0.280 0.397	0.346 0.369 0.357 0.387 0.335 0.384	0.588 0.561 0.595 0.588 0.733 0.633	0.220 <u>0.251</u> 0.260 0.287 0.244 0.301
	_											
Electricity	96 192 336 720	0.129 0.224 0 0.140 0.220 0 0.161 0.255 0 0.194 0.287 0	147 <u>0.240</u> 163 <u>0.259</u>	0.184 0.322 0.198 0.300	0.161 0.260	0 0.177 0.285 1 0.193 0.304	0.164 0.258 0.188 0.283	0.153 0.249 0.169 0.267	0.201 0.315 0.214 0.329	0.182 0.286 0.200 0.304	0.222 0.334 0.231 0.338	0.296 0.386 0.300 0.394
	Avş	0.156 0.246 0	159 <u>0.253</u>	0.192 0.295	0.186 0.28	3 0.186 0.295	0.186 0.285	0.166 0.264	0.214 0.321	0.213 0.296	0.227 0.338	0.311 0.397
Traffic	96 192 336 720	0.360 0.249 0 0.375 0.250 0 0.385 0.270 0 0.430 0.281 0	379 0.256 392 0.26 4	0.617 0.336 0.629 0.336	0.549 0.25 0.530 0.30	0.537 0.315	0.408 0.288 0.425 0.298	0.423 0.287 0.436 0.296	0.604 0.373 0.621 0.383	0.613 0.340 0.618 0.328	0.616 0.382 0.622 0.337	0.696 0.379 0.777 0.420
	Avş	0.387 0.262 0	<u>391 0.264</u>	0.620 0.336	0.542 0.28	3 0.541 0.315	0.442 0.308	0.434 0.295	0.609 0.376	0.624 0.340	0.628 0.379	0.764 0.415
ETTh1	96 192 336 720	0.361 0.390 0 0.409 0.414 0 0.430 0.429 0 0.445 0.460 0	413 0.429 422 <u>0.440</u> 447 <u>0.468</u>	0.436 0.429 0.638 0.469 0.521 0.500	0.539 0.51 0.709 0.63 0.733 0.63	7 0.474 0.487 8 0.569 0.551 5 0.770 0.672	0.462 0.458 0.501 0.483 0.544 0.526	0.405 0.416 0.439 0.443 0.472 0.490	0.420 0.448 0.459 0.465 0.506 0.507	0.534 0.504 0.588 0.535 0.643 0.616	0.500 0.482 0.521 0.496 0.514 0.512	1.008 0.792 1.107 0.809 1.181 0.865
_	Avş	0.411 0.423 0										
ETTh2	96 192 336 720	0.271 0.330 0 0.317 0.402 0 0.332 0.396 0 0.342 0.408 0	314 0.382 329 0.384 379 0.422	0.231 0.322 0.452 0.452 0.462 0.468	0.473 0.500 0.581 0.562 0.775 0.665	0 0.441 0.454 2 0.654 0.567 5 0.956 0.716	0.391 0.415 0.415 0.440 0.441 0.459	0.383 0.418 0.448 0.465 0.605 0.551	0.429 0.439 0.496 0.487 0.463 0.474	0.512 0.493 0.552 0.551 0.562 0.560	0.456 0.452 0.482 0.486 0.515 0.511	5.602 1.931 4.721 1.835 3.647 1.625
	Avş	0.316 0.384 0	324 0.381	0.371 0.404	0.564 0.54	8 0.588 0.525	0.393 0.421	0.431 0.447	0.433 0.447	0.526 0.516	0.453 0.462	4.431 1.729
ETTm1	96 192 336 720	0.291 0.340 0 0.327 0.365 0 0.360 0.381 0 0.415 0.417 0	333 0.370 369 0.392 416 <u>0.420</u>	0.374 0.387 0.410 0.411 0.478 0.450	0.387 0.42 0.605 0.57 0.703 0.64	2 0.363 0.390 2 0.408 0.426 5 0.481 0.476	0.338 <u>0.368</u> 0.373 0.388 0.420 <u>0.420</u>	0.335 0.365 0.369 0.386 0.425 0.421	0.426 0.441 0.445 0.459 0.543 0.490	0.459 0.444 0.495 0.464 0.585 0.516	0.553 0.496 0.621 0.537 0.671 0.561	0.795 0.669 1.212 0.871 1.166 0.823
	Avş	0.348 0.375 0	<u>353</u> 0.382	0.353 0.382	0.514 0.510	0 0.392 0.413	0.358 0.38	0.357 0.379	0.448 0.452	0.481 0.456	0.588 0.517	0.961 0.733
ETTm2	96 192 336 720	0.164 0.254 0 0.223 0.295 0 0.279 0.330 0 0.359 0.383 0	223 0.296 274 0.329 362 0.385	0.249 0.309 0.321 0.351 0.408 0.403	0.345 0.400 0.657 0.522 1.208 0.752	0.307 0.376 0.325 0.388 0.502 0.490	0.222 0.296 0.277 0.333 0.371 0.389	0.224 0.303 0.281 0.342 0.397 0.421	0.269 0.328 0.325 0.366 0.421 0.415	0.280 0.339 0.334 0.361 0.417 0.413	0.281 0.340 0.339 0.372 0.422 0.419	0.533 0.563 1.363 0.887 3.379 1.388
_	Avş	0.256 0.315 0	230 <u>0.317</u>	0.291 0.333	0.021 0.510	10.328 0.382	<u> 0.259</u> 0.319	0.267 0.332	10.304 0.349	0.306 0.347	0.324 0.368	1.410 0.823

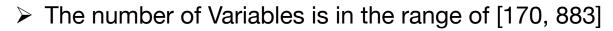
See our paper for full results ©



Input-96-Predict-96 in the ETTh1 dataset

Input-96-Predict-96 in the ETTh1 dataset

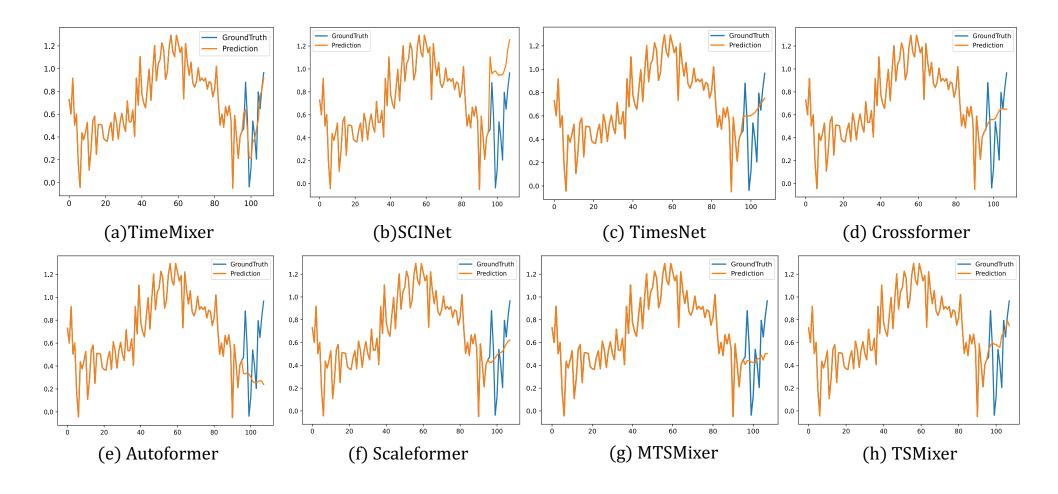
TimeMixer excels at high-frequency part modeling



Input-96-Predict-96 in the Solar-Energy dataset

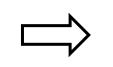
Short-term Forecasting: Multivariate data

PEMS datasets


> Input-96-Predict-12 for the 5min-sampled traffic data

Models											Stationary		
		(Ours)	(2022a)	(2023)	(2023)	(2023a)	(2023)	(2022a)	(2023)	(2022b)	(2022b)	(2021)	(2021)
	MAE	14.63	15.97	15.64	18.95	16.41	15.71	21.36	19.70	19.00	17.64	18.08	19.19
PEMS03	MAPE	14.54	15.89	15.74	17.29	15.17	15.67	18.35	18.35	18.57	17.56	18.75	19.58
	RMSE	23.28	25.20	25.56	30.15	26.72	24.55	35.07	32.35	30.05	28.37	27.82	32.70
	MAE	19.21	20.35	20.38	24.86	21.63	21.62	26.74	24.62	26.51	22.34	25.00	22.05
PEMS04	MAPE	12.53	12.84	12.84	16.65	13.15	13.53	16.46	16.12	16.76	14.85	16.70	14.88
	RMSE	30.92	<u>32.31</u>	32.41	40.46	34.90	34.39	42.86	39.51	41.81	35.47	38.02	36.20
	MAE	20.57	22.79	22.54	27.87	25.12	22.28	28.76	28.65	27.92	26.02	26.92	27.26
PEMS07	MAPE	8.62	9.41	9.38	12.69	10.60	9.57	11.21	12.15	12.29	11.75	11.83	11.63
	RMSE	33.59	35.61	35.49	42.56	40.71	35.40	45.85	45.02	42.29	42.34	40.60	45.81
	MAE	15.22	17.38	17.56	20.35	19.01	17.76	22.11	20.26	20.56	19.29	20.47	20.96
PEMS08	MAPE	9.67	10.80	10.92	13.15	11.83	10.76	12.81	12.09	12.41	12.21	12.27	13.20
	RMSE	24.26	27.34	<u>27.21</u>	31.04	30.65	27.26	35.13	32.38	32.97	38.62	31.52	30.61

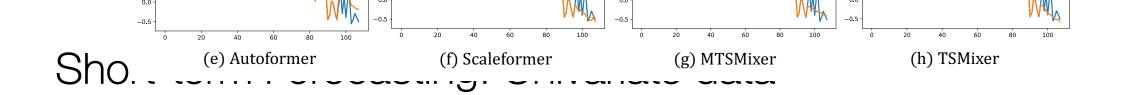
Short-term Forecasting: Multivariate data

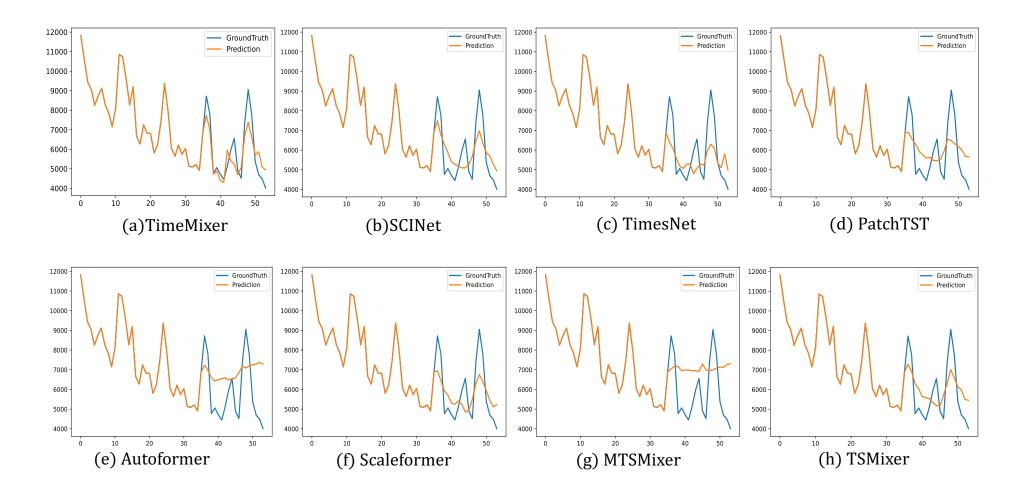

Input-96-Predict-12 in the PEMS07 dataset

2.0	GroundTruth	2.0	GroundTruth	2.0	GroundTruth	GroundTruth

Short-term Forecasting: Univariate data

M4 datasets

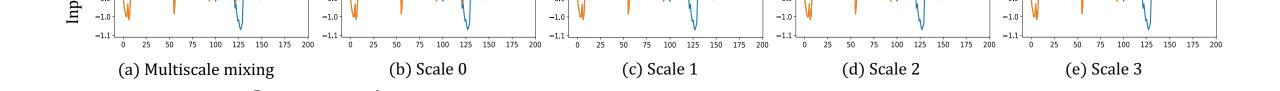

- Predict-[6,48] for multifrequency market data
- > Diverse temporal variations: from hourly to yearly

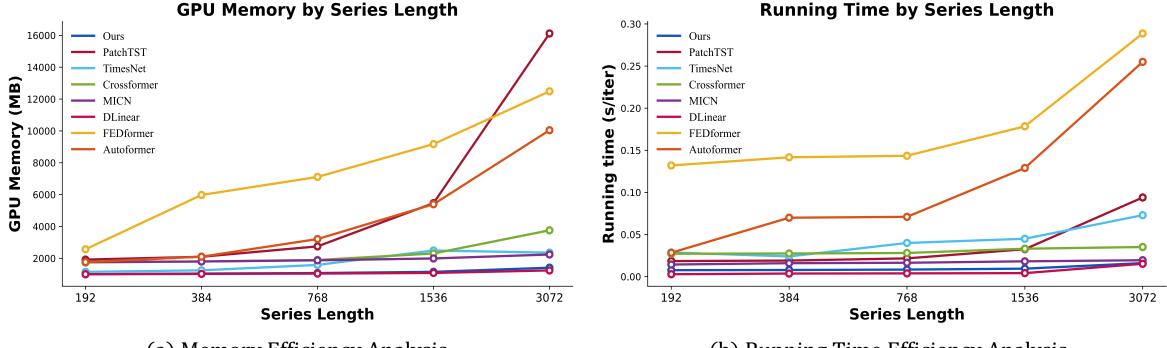


Diverse

temporal variations

N	Iodels	TimeMixer (Ours)	TimesNet (2023a)	N-HiTS N (2023)	N-BEATS* (2019)	^a SCINet I (2022a)	PatchTST (2023)		FiLM (2022a)	-		FED. (2022b)	Stationary (2022b)	Auto. (2021)	2	In. (2021)
Yearly	SMAPE MASE OWA	13.206 2.916 0.776	$\frac{13.387}{2.996}\\ \underline{0.786}$	13.418 3.045 0.793	13.436 3.043 0.794	18.605 4.471 1.132	16.463 3.967 1.003	25.022 7.162 1.667	17.431 4.043 1.042	14.247 3.109 0.827	16.965 4.283 1.058	13.728 3.048 0.803	13.717 3.078 0.807		15.530 3.711 0.942	14.727 3.418 0.881
Quarterly	SMAPE MASE OWA	9.996 1.166 0.825	<u>10.100</u> 1.182 0.890	10.202 1.194 0.899	10.124 <u>1.169</u> <u>0.886</u>	14.871 2.054 1.424	10.644 1.278 0.949	15.214 1.963 1.407	12.925 1.664 1.193	11.364 1.328 1.000	12.145 1.520 1.106	10.792 1.283 0.958	10.958 1.325 0.981		15.449 2.350 1.558	11.360 1.401 1.027
Monthly	SMAPE MASE OWA	12.605 0.919 0.869	$\frac{12.670}{0.933}\\ \underline{0.878}$	12.791 0.969 0.899	12.677 0.937 0.880	14.925 1.131 1.027	13.399 1.031 0.949	16.943 1.442 1.265	15.407 1.298 1.144	14.014 1.053 0.981	13.514 1.037 0.956	14.260 1.102 1.012	13.917 1.097 0.998	13.958 1.103 1.002	17.642 1.913 1.511	14.062 1.141 1.024
Others	SMAPE MASE OWA	4.564 3.115 0.982	4.891 3.302 <u>1.035</u>	5.061 <u>3.216</u> 1.040	4.925 3.391 1.053	16.655 15.034 4.123	6.558 4.511 1.401	41.985 62.734 14.313	5.09	15.880 11.434 3.474	6.709 4.953 1.487	4.954 3.264 1.036	6.302 4.064 1.304			24.460 20.960 5.879
Weighted Average	SMAPE MASE OWA	11.723 1.559 0.840	$\frac{11.829}{1.585}\\ \underline{0.851}$	11.927 1.613 0.861	11.851 1.559 0.855	15.542 2.816 1.309	13.152 1.945 0.998	19.638 5.947 2.279	14.863 2.207 1.125	13.525 2.111 1.051	13.639 2.095 1.051	12.840 1.701 0.918	12.780 1.756 0.930	12.909 1.771 0.939		14.086 2.718 1.230




Input-96-Predict-12 in the M4 dataset

Ablation Studies

	Case	Decompose	Past mi	Past mixing Fu			M4			PEMS04	1	ETTm1	
			Seasonal	Trend	Multipredictor	SMAPE	MASE	OWA	MAE	MAPE	RMSE	MSE	MAE
Ours	1	\checkmark		\checkmark	\checkmark	11.723	1.559	0.840	19.21	12.53	30.92	0.390	0.404
	2	\checkmark		\checkmark	×	12.503	1.634	0.925	21.67	13.45	34.89	0.402	0.415
	3	√	×	\checkmark	\checkmark	13.051	1.676	0.962	24.49	16.28	38.79	0.411	0.427
	4	√	7	×	\checkmark	12.911	1.655	0.941	22.91	15.02	37.04	0.405	0.414
	5	√		\checkmark	\checkmark	12.008	1.628	0.871	20.78	13.02	32.47	0.392	0.413
	6	√	7	\nearrow	\checkmark	11.978	1.626	0.859	21.09	13.78	33.11	0.396	0.415
	7	√	\checkmark	\nearrow	\checkmark	13.012	1.657	0.954	22.27	15.14	34.67	0.412	0.429
	8	×	7		\checkmark	11.975	1.617	0.851	21.51	13.47	34.81	0.395	0.408
	9	×			\checkmark	11.973	1.622	0.850	21.79	14.03	35.23	0.393	0.406
	10	×	×		\checkmark	12.468	1.671	0.916	24.87	16.66	39.48	0.405	0.412

Every design in TimeMixer is effective.

(a) Memory Efficiency Analysis

(b) Running Time Efficiency Analysis

TimeMixer achieves favorable efficiency in comparing with Transformer-based models

Thank You! weiming.wsy@antgroup.com

wuhx23@mails.tsinghua.edu.cn

