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ABSTRACT

Time series forecasting is widely used in extensive applications, such as traffic
planning and weather forecasting. However, real-world time series usually present
intricate temporal variations, making forecasting extremely challenging. Going
beyond the mainstream paradigms of plain decomposition and multiperiodicity
analysis, we analyze temporal variations in a novel view of multiscale-mixing,
which is based on an intuitive but important observation that time series present
distinct patterns in different sampling scales. The microscopic and the macroscopic
information are reflected in fine and coarse scales respectively, and thereby complex
variations can be inherently disentangled. Based on this observation, we propose
TimeMixer as a fully MLP-based architecture with Past-Decomposable-Mixing

(PDM) and Future-Multipredictor-Mixing (FMM) blocks to take full advantage of
disentangled multiscale series in both past extraction and future prediction phases.
Concretely, PDM applies the decomposition to multiscale series and further mixes
the decomposed seasonal and trend components in fine-to-coarse and coarse-to-fine
directions separately, which successively aggregates the microscopic seasonal and
macroscopic trend information. FMM further ensembles multiple predictors to
utilize complementary forecasting capabilities in multiscale observations. Conse-
quently, TimeMixer is able to achieve consistent state-of-the-art performances in
both long-term and short-term forecasting tasks with favorable run-time efficiency.

1 INTRODUCTION

Time series forecasting has been studied with immense interest in extensive applications, such as
economics (Granger & Newbold, 2014), energy (Martín et al., 2010; Qian et al., 2019), traffic planning
(Chen et al., 2001; Yin et al., 2021) and weather prediction (Wu et al., 2023b), which is to predict
future temporal variations based on past observations of time series (Wu et al., 2023a). However, due
to the complex and non-stationary nature of the real world or systems, the observed series usually
present intricate temporal patterns, where the multitudinous variations, such as increasing, decreasing,
and fluctuating, are deeply mixed, bringing severe challenges to the forecasting task.

Recently, deep models have achieved promising progress in time series forecasting. The representative
models capture temporal variations with well-designed architectures, which span a wide range of
foundation backbones, including CNN (Wang et al., 2023; Wu et al., 2023a; Hewage et al., 2020),
RNN (Lai et al., 2018; Qin et al., 2017; Salinas et al., 2020), Transformer (Vaswani et al., 2017;
Zhou et al., 2021; Wu et al., 2021; Zhou et al., 2022b; Nie et al., 2023) and MLP (Zeng et al., 2023;
Zhang et al., 2022; Oreshkin et al., 2019; Challu et al., 2023). In the development of elaborative
model architectures, to tackle intricate temporal patterns, some special designs are also involved in
these deep models. The widely-acknowledged paradigms primarily include series decomposition and
multiperiodicity analysis. As a classical time series analysis technology, decomposition is introduced
to deep models as a basic module by (Wu et al., 2021), which decomposes the complex temporal
patterns into more predictable components, such as seasonal and trend, and thereby benefiting
the forecasting process (Zeng et al., 2023; Zhou et al., 2022b; Wang et al., 2023). Furthermore,
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Multiscale Property of Time Series
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Observation 1: History Extraction

Published as a conference paper at ICLR 2024

Table 5: Ablations on both PDM (Decompose, Season Mixing, Trend Mixing) and FMM blocks in M4,
PEMS04 and predict-336 setting of ETTm1. % indicates the bottom-up mixing while . indicates
top-down. A check mark X and a wrong mark ⇥ indicate with and without certain components
respectively. ¨ is the official design in TimeMixer (See Appendix F for complete ablation results).

Case Decompose Past mixing Future mixing M4 PEMS04 ETTm1

Seasonal Trend Multipredictor SMAPE MASE OWA MAE MAPE RMSE MSE MAE

¨ X % . X 11.723 1.559 0.840 19.21 12.53 30.92 0.390 0.404
≠ X % . ⇥ 12.503 1.634 0.925 21.67 13.45 34.89 0.402 0.415

Æ X ⇥ . X 13.051 1.676 0.962 24.49 16.28 38.79 0.411 0.427

Ø X % ⇥ X 12.911 1.655 0.941 22.91 15.02 37.04 0.405 0.414

∞ X . . X 12.008 1.628 0.871 20.78 13.02 32.47 0.392 0.413

± X % % X 11.978 1.626 0.859 21.09 13.78 33.11 0.396 0.415

≤ X . % X 13.012 1.657 0.954 22.27 15.14 34.67 0.412 0.429

≥ ⇥ % X 11.975 1.617 0.851 21.51 13.47 34.81 0.395 0.408

¥ ⇥ . X 11.973 1.622 0.850 21.79 14.03 35.23 0.393 0.406

µ ⇥ ⇥ X 12.468 1.671 0.916 24.87 16.66 39.48 0.405 0.412

of performance. This illustrates that solely relying on seasonal or trend information interaction is
insufficient for accurate predictions. Furthermore, in both ablations ∞ and ±, we employed the same
mixing approach for both seasons and trends. However, it cannot bring better predictive performance.
Similar situation occurs in ≤ that adopts opposite mixing strategies to our design. These results
demonstrate the effectiveness of our design in both bottom-up seasonal mixing and top-down trend
mixing. Concurrently, in ablations ≥ and ¥, we opted to eliminate the decomposition architecture and
mix the multiscale series directly. However, without decomposition, neither bottom-up nor top-down
mixing method can achieve a good performance, indicating the necessity of season-trend separate
mixing. Furthermore, in ablations µ, eliminating the entire Past-Decomposable-Mixing block causes
a serious drop in the model’s predictive performance. The above findings highlight the substantial
influence of an appropriate past mixing method on the final performance of the model. Starting from
the insights in time series, TimeMixer presents the best mixing method in past information extraction.

Seasonal and trend mixing visualization To provide an intuitive understanding of PDM, we
visualize temporal linear weights for seasonal mixing and trend mixing in Figure 3(a)⇠(b). We find
that the seasonal and trend items present distinct mixing properties, where the seasonal mixing layer
presents periodic changes (repeated blue lines in (a)) and the trend mixing layer is dominated by
local aggregations (the dominating diagonal yellow line in (b)). This also verifies the necessity of
adopting separate mixing techniques for seasonal and trend terms. Furthermore, Figure 3(c) shows
the predictions of season and trend terms in fine (scale 0) and coarse (scale 3) scales. We can observe
that the seasonal terms of fine-scale and trend parts of coarse-scale are crucial for accurate predictions.
This observation provides insights for our design in utilizing bottom-up mixing for seasonal terms
and top-down mixing for trend components.
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Figure 3: Visualization of temporal linear weights in seasonal mixing (Eq. 4), trend mixing (Eq. 5),
and predictions from multiscale season-trend items. All the experiments are on the ETTh1 dataset
under the input-96-predict-96 setting.
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Ø Seasonal and trend parts present different mixing properties.

Ø Fine-scale seasonal and coarse-scale trend are essential.



Observation 2: Future Prediction
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Figure 4: Visualization of predictions from different scales (bxL
m in Eq. 6) on the input-96-predict-96

settings of the ETTh1 dataset. The implementation details are included in Appendix A.

(a)	Memory	Efficiency	Analysis	 (b)	Running	Time	Efficiency	Analysis	
Figure 5: Efficiency analysis in both GPU memory and running time. The results are recorded on the
ETTh1 dataset with batch size as 16. The running time is averaged from 102 iterations.

Multipredictor visualization To provide an intuitive understanding of the forecasting skills of
multiscale series, we plot the forecasting results from different scales for qualitative comparison.
Figure 4(a) presents the overall prediction of our model with Future-Multipredictor-Mixing, which
indicates accurate prediction according to the future variations using mixed scales. To study the
component of each individual scale, we demonstrate the prediction results for each scale in Figure
4(b)⇠(e). Specifically, prediction results from fine-scale time series concentrate more on the detailed
variations of time series and capture seasonal patterns with greater precision. In contrast, as shown in
Figure 4(c)⇠(e), with multiple downsampling, the predictions from coarse-scale series focus more
on macro trends. The above results also highlight the benefits of Future-Multipredictor-Mixing in
utilizing complementary forecasting skills from multiscale series.

Figure 6: Analysis on number of scales
on ETTm1 dataset.

Efficiency analysis We compare the running memory and
time against the latest state-of-the-art models in Figure 5 un-
der the training phase, where TimeMixer consistently demon-
strates favorable efficiency, in terms of both GPU memory
and running time, for various series lengths (ranging from 192
to 3072), in addition to the consistent state-of-the-art perfor-
mances for both long-term and short-term forecasting tasks.

Analysis on number of scales We explore the impact from
the number of scales (M ) in Figure 6 under different series
lengths. Specifically, when M increases, the performance gain
declines for shorter prediction lengths. In contrast, for longer
prediction lengths, the performance improves more as M increases. Therefore, we set M as 3 for
long-term forecast and 1 for short-term forecast to trade off performance and efficiency.

5 CONCLUSION

We presented TimeMixer with a multiscale mixing architecture to tackle the intricate temporal
variations in time series forecasting. Empowered by Past-Decomposable-Mixing and Future-
Multipredictor-Mixing blocks, TimeMixer took advantage of both disentangled variations and
complementary forecasting capabilities. In all of our experiments, TimeMixer achieved consis-
tent state-of-the-art performances in both long-term and short-term forecasting tasks. Moreover,
benefiting from the fully MLP-based architecture, TimeMixer demonstrated favorable run-time
efficiency. Detailed visualizations and ablations are included to provide insights for our design.
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Ø Future variation is jointly determined by multiscale past series.

Ø Different scale present complementary forecasting capabilities.
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Figure 1: Overall architecture of TimeMixer, which consists of Past-Decomposable Mixing and
Future-Multipredictor-Mixing for past observations and future predictions respectively.

Next, we utilize stacked Past-Decomposable-Mixing (PDM) blocks to mix past information across
different scales. For the l-th layer, the input is Xl�1 and the process of PDM can be formalized as:

Xl = PDM(Xl�1), l 2 {0, · · · , L}, (1)

where L is the total layer and Xl = {xl
0, · · · ,xl

M},xl
m 2 Rb P

2m c⇥dmodel denotes the mixed past
representations with dmodel channels. More details of PDM are described in the next section.

As for the future prediction phase, we adopt the Future-Multipredictor-Mixing (FMM) block to
ensemble extracted multiscale past information XL and generate future predictions, which is:

bx = FMM(XL), (2)

where bx 2 RF⇥C represents the final prediction. With the above designs, TimeMixer can successfully
capture essential past information from disentangled multiscale observations and predict the future
with benefits from multiscale past information.

3.2 PAST DECOMPOSABLE MIXING

We observe that for past observations, due to the complex nature of real-world series, even the coarsest
scale series present mixed variations. As shown in Figure 1, the series in the top layer still present
clear seasonality and trend simultaneously. It is notable that the seasonal and trend components hold
distinct properties in time series analysis (Cleveland et al., 1990), which corresponds to short-term
and long-term variations or stationary and non-stationary dynamics respectively. Therefore, instead
of directly mixing multiscale series as a whole, we propose the Past-Decomposable-Mixing (PDM)
block to mix the decomposed seasonal and trend components in multiple scales separately.

Concretely, for the l-th PDM block, we first decompose the multiscale time series Xl into seasonal
parts Sl = {sl0, · · · , slM} and trend parts Tl = {tl0, · · · , tlM} by series decomposition block from
Autoformer (Wu et al., 2021). As the above analyzed, taking the distinct properties of seasonal-trend
parts into account, we apply the mixing operation to seasonal and trend terms separately to interact
information from multiple scales. Overall, the l-th PDM block can be formalized as:

slm, tlm = SeriesDecomp(xl
m),m 2 {0, · · · ,M},

Xl = Xl�1+FeedForward

✓
S-Mix

�
{slm}Mm=0

�
+T-Mix

�
{tlm}Mm=0

�◆
,

(3)

where FeedForward(·) contains two linear layers with intermediate GELU activation function for
information interaction among channels, S-Mix(·),T-Mix(·) denote seasonal and trend mixing.

Seasonal Mixing In seasonality analysis (Box & Jenkins, 1970), larger periods can be seen as
the aggregation of smaller periods, such as the weekly period of traffic flow formed by seven daily
changes, addressing the importance of detailed information in predicting future seasonal variations.

Therefore, in seasonal mixing, we adopt the bottom-up approach to incorporate information from
the lower-level fine-scale time series upwards, which can supplement detailed information to the
seasonality modeling of coarser scales. Technically, for the set of multiscale seasonal parts Sl =

4

Ø Past Decomposable Mixing for history extraction

Ø Future Multipredictor Mixing for future prediction
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Figure 1: Overall architecture of TimeMixer, which consists of Past-Decomposable Mixing and
Future-Multipredictor-Mixing for past observations and future predictions respectively.
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representations with dmodel channels. More details of PDM are described in the next section.
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where FeedForward(·) contains two linear layers with intermediate GELU activation function for
information interaction among channels, S-Mix(·),T-Mix(·) denote seasonal and trend mixing.

Seasonal Mixing In seasonality analysis (Box & Jenkins, 1970), larger periods can be seen as
the aggregation of smaller periods, such as the weekly period of traffic flow formed by seven daily
changes, addressing the importance of detailed information in predicting future seasonal variations.
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different scales. For the l-th layer, the input is Xl�1 and the process of PDM can be formalized as:
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ensemble extracted multiscale past information XL and generate future predictions, which is:
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where bx 2 RF⇥C represents the final prediction. With the above designs, TimeMixer can successfully
capture essential past information from disentangled multiscale observations and predict the future
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the aggregation of smaller periods, such as the weekly period of traffic flow formed by seven daily
changes, addressing the importance of detailed information in predicting future seasonal variations.

Therefore, in seasonal mixing, we adopt the bottom-up approach to incorporate information from
the lower-level fine-scale time series upwards, which can supplement detailed information to the
seasonality modeling of coarser scales. Technically, for the set of multiscale seasonal parts Sl =

4



Past Decomposable Mixing

Published as a conference paper at ICLR 2024

…Bo
tto

m-Up-M
ixin

g

(a) Seasonal Mixing

…

Top-Dow
n-M

ixin
g

(b) Trend Mixing

… Pre
dicto

r

(c) Future Prediction

Figure 2: The temporal linear layer in seasonal mixing (a), trend mixing (b) and future prediction (c).

{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:

for m: 1 ! M do: slm = slm + Bottom-Up-Mixing(slm�1). (4)

where Bottom-Up-Mixing(·) is instantiated as two linear layers with an intermediate GELU activa-
tion function along the temporal dimension, whose input dimension is b P

2m�1 c and output dimension
is b P

2m c. See Figure 2 for an intuitive understanding.

Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL

M},xL
m 2

Rb P
2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =

MX

m=0

bxm, (6)

where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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Figure 1: Overall architecture of TimeMixer, which consists of Past-Decomposable Mixing and
Future-Multipredictor-Mixing for past observations and future predictions respectively.

Next, we utilize stacked Past-Decomposable-Mixing (PDM) blocks to mix past information across
different scales. For the l-th layer, the input is Xl�1 and the process of PDM can be formalized as:

Xl = PDM(Xl�1), l 2 {0, · · · , L}, (1)

where L is the total layer and Xl = {xl
0, · · · ,xl

M},xl
m 2 Rb P

2m c⇥dmodel denotes the mixed past
representations with dmodel channels. More details of PDM are described in the next section.

As for the future prediction phase, we adopt the Future-Multipredictor-Mixing (FMM) block to
ensemble extracted multiscale past information XL and generate future predictions, which is:

bx = FMM(XL), (2)

where bx 2 RF⇥C represents the final prediction. With the above designs, TimeMixer can successfully
capture essential past information from disentangled multiscale observations and predict the future
with benefits from multiscale past information.

3.2 PAST DECOMPOSABLE MIXING

We observe that for past observations, due to the complex nature of real-world series, even the coarsest
scale series present mixed variations. As shown in Figure 1, the series in the top layer still present
clear seasonality and trend simultaneously. It is notable that the seasonal and trend components hold
distinct properties in time series analysis (Cleveland et al., 1990), which corresponds to short-term
and long-term variations or stationary and non-stationary dynamics respectively. Therefore, instead
of directly mixing multiscale series as a whole, we propose the Past-Decomposable-Mixing (PDM)
block to mix the decomposed seasonal and trend components in multiple scales separately.

Concretely, for the l-th PDM block, we first decompose the multiscale time series Xl into seasonal
parts Sl = {sl0, · · · , slM} and trend parts Tl = {tl0, · · · , tlM} by series decomposition block from
Autoformer (Wu et al., 2021). As the above analyzed, taking the distinct properties of seasonal-trend
parts into account, we apply the mixing operation to seasonal and trend terms separately to interact
information from multiple scales. Overall, the l-th PDM block can be formalized as:

slm, tlm = SeriesDecomp(xl
m),m 2 {0, · · · ,M},

Xl = Xl�1+FeedForward

✓
S-Mix

�
{slm}Mm=0

�
+T-Mix

�
{tlm}Mm=0

�◆
,

(3)

where FeedForward(·) contains two linear layers with intermediate GELU activation function for
information interaction among channels, S-Mix(·),T-Mix(·) denote seasonal and trend mixing.

Seasonal Mixing In seasonality analysis (Box & Jenkins, 1970), larger periods can be seen as
the aggregation of smaller periods, such as the weekly period of traffic flow formed by seven daily
changes, addressing the importance of detailed information in predicting future seasonal variations.

Therefore, in seasonal mixing, we adopt the bottom-up approach to incorporate information from
the lower-level fine-scale time series upwards, which can supplement detailed information to the
seasonality modeling of coarser scales. Technically, for the set of multiscale seasonal parts Sl =
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{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:

for m: 1 ! M do: slm = slm + Bottom-Up-Mixing(slm�1). (4)

where Bottom-Up-Mixing(·) is instantiated as two linear layers with an intermediate GELU activa-
tion function along the temporal dimension, whose input dimension is b P

2m�1 c and output dimension
is b P

2m c. See Figure 2 for an intuitive understanding.

Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL

M},xL
m 2

Rb P
2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =

MX

m=0

bxm, (6)

where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:

for m: 1 ! M do: slm = slm + Bottom-Up-Mixing(slm�1). (4)

where Bottom-Up-Mixing(·) is instantiated as two linear layers with an intermediate GELU activa-
tion function along the temporal dimension, whose input dimension is b P

2m�1 c and output dimension
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2m c. See Figure 2 for an intuitive understanding.

Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL

M},xL
m 2

Rb P
2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =

MX

m=0

bxm, (6)

where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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Figure 1: Overall architecture of TimeMixer, which consists of Past-Decomposable Mixing and
Future-Multipredictor-Mixing for past observations and future predictions respectively.

Next, we utilize stacked Past-Decomposable-Mixing (PDM) blocks to mix past information across
different scales. For the l-th layer, the input is Xl�1 and the process of PDM can be formalized as:

Xl = PDM(Xl�1), l 2 {0, · · · , L}, (1)

where L is the total layer and Xl = {xl
0, · · · ,xl

M},xl
m 2 Rb P

2m c⇥dmodel denotes the mixed past
representations with dmodel channels. More details of PDM are described in the next section.

As for the future prediction phase, we adopt the Future-Multipredictor-Mixing (FMM) block to
ensemble extracted multiscale past information XL and generate future predictions, which is:

bx = FMM(XL), (2)

where bx 2 RF⇥C represents the final prediction. With the above designs, TimeMixer can successfully
capture essential past information from disentangled multiscale observations and predict the future
with benefits from multiscale past information.

3.2 PAST DECOMPOSABLE MIXING

We observe that for past observations, due to the complex nature of real-world series, even the coarsest
scale series present mixed variations. As shown in Figure 1, the series in the top layer still present
clear seasonality and trend simultaneously. It is notable that the seasonal and trend components hold
distinct properties in time series analysis (Cleveland et al., 1990), which corresponds to short-term
and long-term variations or stationary and non-stationary dynamics respectively. Therefore, instead
of directly mixing multiscale series as a whole, we propose the Past-Decomposable-Mixing (PDM)
block to mix the decomposed seasonal and trend components in multiple scales separately.

Concretely, for the l-th PDM block, we first decompose the multiscale time series Xl into seasonal
parts Sl = {sl0, · · · , slM} and trend parts Tl = {tl0, · · · , tlM} by series decomposition block from
Autoformer (Wu et al., 2021). As the above analyzed, taking the distinct properties of seasonal-trend
parts into account, we apply the mixing operation to seasonal and trend terms separately to interact
information from multiple scales. Overall, the l-th PDM block can be formalized as:

slm, tlm = SeriesDecomp(xl
m),m 2 {0, · · · ,M},

Xl = Xl�1+FeedForward
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(3)

where FeedForward(·) contains two linear layers with intermediate GELU activation function for
information interaction among channels, S-Mix(·),T-Mix(·) denote seasonal and trend mixing.

Seasonal Mixing In seasonality analysis (Box & Jenkins, 1970), larger periods can be seen as
the aggregation of smaller periods, such as the weekly period of traffic flow formed by seven daily
changes, addressing the importance of detailed information in predicting future seasonal variations.

Therefore, in seasonal mixing, we adopt the bottom-up approach to incorporate information from
the lower-level fine-scale time series upwards, which can supplement detailed information to the
seasonality modeling of coarser scales. Technically, for the set of multiscale seasonal parts Sl =
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{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:

for m: 1 ! M do: slm = slm + Bottom-Up-Mixing(slm�1). (4)

where Bottom-Up-Mixing(·) is instantiated as two linear layers with an intermediate GELU activa-
tion function along the temporal dimension, whose input dimension is b P

2m�1 c and output dimension
is b P

2m c. See Figure 2 for an intuitive understanding.

Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL

M},xL
m 2

Rb P
2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =

MX

m=0

bxm, (6)

where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:

for m: 1 ! M do: slm = slm + Bottom-Up-Mixing(slm�1). (4)

where Bottom-Up-Mixing(·) is instantiated as two linear layers with an intermediate GELU activa-
tion function along the temporal dimension, whose input dimension is b P
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Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL

M},xL
m 2

Rb P
2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =

MX

m=0

bxm, (6)

where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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{sl0, · · · , slM}, we use the Bottom-Up-Mixing layer for the m-th scale in a residual way to achieve
bottom-up seasonal information interaction, which can be formalized as:
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Trend Mixing Contrary to seasonal parts, for trend items, the detailed variations can introduce
noise in capturing macroscopic trend. Note that the upper coarse scale time series can easily provide
clear macro information than the lower level. Therefore, we adopt a top-down mixing method to
utilize the macro knowledge from coarser scales to guide the trend modeling of finer scales.

Technically, for multiscale trend components Tl = {tl0, · · · , tlM}, we adopt the Top-Down-Mixing
layer for the m-th scale in a residual way to achieve top-down trend information interaction:

for m: (M � 1) ! 0 do: tlm = tlm +Top-Down-Mixing(tlm+1), (5)

where Top-Down-Mixing(·) is two linear layers with an intermediate GELU activation function,
whose input dimension is b P

2m+1 c and output dimension is b P
2m c as shown in Figure 2.

Empowered by seasonal and trend mixing, PDM progressively aggregates the detailed seasonal
information from fine to coarse and dive into the macroscopic trend information with prior knowledge
from coarser scales, eventually achieving the multiscale mixing in past information extraction.

3.3 FUTURE MULTIPREDICTOR MIXING

After L PDM blocks, we obtain the multiscale past information as XL = {xL
0 , · · · ,xL
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2m c⇥dmodel . Since the series in different scales presents different dominating variations, their

predictions also present different capabilities. To fully utilize the multiscale information, we propose
to aggregate predictions from multiscale series and present Future-Multipredictor-Mixing block as:

bxm = Predictorm(xL
m), m 2 {0, · · · ,M}, bx =
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where bxm 2 RF⇥C represents the future prediction from the m-th scale series and the final output is
bx 2 RF⇥C . Predictorm(·) denotes the predictor of the m-th scale series, which firstly adopts one
single linear layer to directly regress length-F future from length-b P

2m c extracted past information
(Figure 2) and then projects deep representations into C variates. Note that FMM is an ensemble of
multiple predictors, where different predictors are based on past information from different scales,
enabling FMM to integrate complementary forecasting capabilities of mixed multiscale series.

4 EXPERIMENTS

We conduct extensive experiments to evaluate the performance and efficiency of TimeMixer, covering
long-term and short-term forecasting, including 18 real-world benchmarks and 15 baselines. The
detailed model and experiment configurations are summarized in Appendix A.
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Table 1: Summary of benchmarks. Forecastability is one minus the entropy of Fourier domain.

Tasks Dataset Variate Predict Length Frequency Forecastability Information
ETT (4 subsets) 7 96⇠720 15 mins 0.46 Temperature

Long-term Weather 21 96⇠720 10 mins 0.75 Weather

forecasting Solar-Energy 137 96⇠720 10min 0.33 Electricity

Electricity 321 96⇠720 Hourly 0.77 Electricity

Traffic 862 96⇠720 Hourly 0.68 Transportation

Short-term PEMS (4 subsets) 170⇠883 12 5min 0.55 Traffic network

forecasting M4 (6 subsets) 1 6⇠48 Hourly⇠Yearly 0.47 Database

Benchmarks For long-term forecasting, we experiment on 8 well-established benchmarks: ETT
datasets (including 4 subsets: ETTh1, ETTh2, ETTm1, ETTm2), Weather, Solar-Energy, Electricity,
and Traffic following (Zhou et al., 2021; Wu et al., 2021; Liu et al., 2022a). For short-term forecasting,
we adopt the PeMS (Chen et al., 2001) which contains four public traffic network datasets (PEMS03,
PEMS04, PEMS07, PEMS08), and M4 dataset which involves 100,000 different time series collected
in different frequencies. Furthermore, we measure the forecastability (Goerg, 2013) of all datasets.
It is observed that ETT, M4, and Solar-Energy exhibit relatively low forecastability, indicating the
challenges in these benchmarks. More information is summarized in Table 1.

Baselines We compare TimeMixer with 15 baselines, which comprise the state-of-the-art long-term
forecasting model PatchTST (2023) and advanced short-term forecasting models TimesNet (2023a)
and SCINet (2022a), as well as other competitive models including Crossformer (2023), MICN
(2023), FiLM (2022a), DLinear (2023), LightTS (2022) ,FEDformer (2022b), Stationary (2022b),
Pyraformer (2021), Autoformer (2021), Informer (2021), N-HiTS (2023) and N-BEATS (2019).

Unified experiment settings Note that experimental results reported by the above mentioned
baselines cannot be compared directly due to different choices of input length and hyper-parameter
searching strategy. For fairness, we make a great effort to provide two types of experiments. In the
main text, we align the input length of all baselines and report results averaged from three repeats (see
Appendix C for error bars). In Appendix, to compare the upper bound of models, we also conduct a
comprehensive hyperparameter searching and report the best results in Table 14 of Appendix.

Implementation details All the experiments are implemented in PyTorch (Paszke et al., 2019) and
conducted on a single NVIDIA A100 80GB GPU. We utilize the L2 loss for model training. The
number of scales M is set according to the time series length to trade off performance and efficiency.

4.1 MAIN RESULTS

Long-term forecasting As shown in Table 2, TimeMixer achieves consistent state-of-the-art
performance in all benchmarks, covering a large variety of series with different frequencies, variate
numbers and real-world scenarios. Especially, TimeMixer outperforms PatchTST by a considerable
margin, with a 9.4% MSE reduction in Weather and a 24.7% MSE reduction in Solar-Energy. It is
worth noting that TimeMixer exhibits good performance even for datasets with low forecastability,
such as Solar-Energy and ETT, further proving the generality and effectiveness of TimeMixer.

Table 2: Long-term forecasting results. All the results are averaged from 4 different prediction
lengths, that is {96, 192, 336, 720}. A lower MSE or MAE indicates a better prediction. We fix the
input length as 96 for all experiments. See Table 13 in Appendix for the full results.

Models TimeMixer PatchTST TimesNet Crossformer MICN FiLM DLinear FEDformer Stationary Autoformer Informer
(Ours) (2023) (2023a) (2023) (2023) (2022a) (2023) (2022b) (2022b) (2021) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE
Weather 0.240 0.271 0.265 0.285 0.251 0.294 0.264 0.320 0.268 0.321 0.271 0.291 0.265 0.315 0.309 0.360 0.288 0.314 0.338 0.382 0.634 0.548

Solar-Energy 0.216 0.280 0.287 0.333 0.403 0.374 0.406 0.442 0.283 0.358 0.380 0.371 0.330 0.401 0.328 0.383 0.350 0.390 0.586 0.557 0.331 0.381

Electricity 0.182 0.272 0.216 0.318 0.193 0.304 0.244 0.334 0.196 0.309 0.223 0.302 0.225 0.319 0.214 0.327 0.193 0.296 0.227 0.338 0.311 0.397

Traffic 0.484 0.297 0.529 0.341 0.620 0.336 0.667 0.426 0.593 0.356 0.637 0.384 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.764 0.416

ETTh1 0.447 0.440 0.516 0.484 0.495 0.450 0.529 0.522 0.475 0.480 0.516 0.483 0.461 0.457 0.498 0.484 0.570 0.537 0.496 0.487 1.040 0.795

ETTh2 0.364 0.395 0.391 0.411 0.414 0.427 0.942 0.684 0.574 0.531 0.402 0.420 0.563 0.519 0.437 0.449 0.526 0.516 0.450 0.459 4.431 1.729

ETTm1 0.381 0.395 0.406 0.407 0.400 0.406 0.513 0.495 0.423 0.422 0.411 0.402 0.404 0.408 0.448 0.452 0.481 0.456 0.588 0.517 0.961 0.734

ETTm2 0.275 0.323 0.290 0.334 0.291 0.333 0.757 0.610 0.353 0.402 0.287 0.329 0.354 0.402 0.305 0.349 0.306 0.347 0.327 0.371 1.410 0.810
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TimeMixer achieves consistent state-of-the-art in all benchmark and two settings
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Table 13: Unified hyperparameter results for the long-term forecasting task. We compare extensive
competitive models under different prediction lengths. Avg is averaged from all four prediction
lengths, that is 96, 192, 336, 720.

Models TimeMixer PatchTST TimesNet Crossformer MICN FiLM DLinear FEDformer Stationary Autoformer Informer
(Ours) 2023 2023a 2023 2023 2022a 2023 2022b 2022b 2021 2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.163 0.209 0.186 0.227 0.172 0.220 0.195 0.271 0.198 0.261 0.195 0.236 0.195 0.252 0.217 0.296 0.173 0.223 0.266 0.336 0.300 0.384
192 0.208 0.250 0.234 0.265 0.219 0.261 0.209 0.277 0.239 0.299 0.239 0.271 0.237 0.295 0.276 0.336 0.245 0.285 0.307 0.367 0.598 0.544
336 0.251 0.287 0.284 0.301 0.246 0.337 0.273 0.332 0.285 0.336 0.289 0.306 0.282 0.331 0.339 0.380 0.321 0.338 0.359 0.395 0.578 0.523
720 0.339 0.341 0.356 0.349 0.365 0.359 0.379 0.401 0.351 0.388 0.361 0.351 0.345 0.382 0.403 0.428 0.414 0.410 0.419 0.428 1.059 0.741

Avg 0.240 0.271 0.265 0.285 0.251 0.294 0.264 0.320 0.268 0.321 0.271 0.291 0.265 0.315 0.309 0.360 0.288 0.314 0.338 0.382 0.634 0.548

So
la

r-
En

er
gy 96 0.189 0.259 0.265 0.323 0.373 0.358 0.232 0.302 0.257 0.325 0.333 0.350 0.290 0.378 0.286 0.341 0.321 0.380 0.456 0.446 0.287 0.323

192 0.222 0.283 0.288 0.332 0.397 0.376 0.371 0.410 0.278 0.354 0.371 0.372 0.320 0.398 0.291 0.337 0.346 0.369 0.588 0.561 0.297 0.341
336 0.231 0.292 0.301 0.339 0.420 0.380 0.495 0.515 0.298 0.375 0.408 0.385 0.353 0.415 0.354 0.416 0.357 0.387 0.595 0.588 0.367 0.429
720 0.223 0.285 0.295 0.336 0.420 0.381 0.526 0.542 0.299 0.379 0.406 0.377 0.357 0.413 0.380 0.437 0.375 0.424 0.733 0.633 0.374 0.431

Avg 0.216 0.280 0.287 0.333 0.403 0.374 0.406 0.442 0.283 0.358 0.380 0.371 0.330 0.401 0.328 0.383 0.350 0.390 0.586 0.557 0.331 0.381

El
ec

tri
ci

ty 96 0.153 0.247 0.190 0.296 0.168 0.272 0.219 0.314 0.180 0.293 0.198 0.274 0.210 0.302 0.193 0.308 0.169 0.273 0.201 0.317 0.274 0.368
192 0.166 0.256 0.199 0.304 0.184 0.322 0.231 0.322 0.189 0.302 0.198 0.278 0.210 0.305 0.201 0.315 0.182 0.286 0.222 0.334 0.296 0.386
336 0.185 0.277 0.217 0.319 0.198 0.300 0.246 0.337 0.198 0.312 0.217 0.300 0.223 0.319 0.214 0.329 0.200 0.304 0.231 0.443 0.300 0.394
720 0.225 0.310 0.258 0.352 0.220 0.320 0.280 0.363 0.217 0.330 0.278 0.356 0.258 0.350 0.246 0.355 0.222 0.321 0.254 0.361 0.373 0.439

Avg 0.182 0.272 0.216 0.318 0.193 0.304 0.244 0.334 0.196 0.309 0.223 0.302 0.225 0.319 0.214 0.327 0.193 0.296 0.227 0.338 0.311 0.397

Tr
af

fic

96 0.462 0.285 0.526 0.347 0.593 0.321 0.644 0.429 0.577 0.350 0.647 0.384 0.650 0.396 0.587 0.366 0.612 0.338 0.613 0.388 0.719 0.391
192 0.473 0.296 0.522 0.332 0.617 0.336 0.665 0.431 0.589 0.356 0.600 0.361 0.598 0.370 0.604 0.373 0.613 0.340 0.616 0.382 0.696 0.379
336 0.498 0.296 0.517 0.334 0.629 0.336 0.674 0.420 0.594 0.358 0.610 0.367 0.605 0.373 0.621 0.383 0.618 0.328 0.622 0.337 0.777 0.420
720 0.506 0.313 0.552 0.352 0.640 0.350 0.683 0.424 0.613 0.361 0.691 0.425 0.645 0.394 0.626 0.382 0.653 0.355 0.660 0.408 0.864 0.472

Avg 0.484 0.297 0.529 0.341 0.620 0.336 0.667 0.426 0.593 0.356 0.637 0.384 0.625 0.383 0.610 0.376 0.624 0.340 0.628 0.379 0.764 0.416

ET
Th

1

96 0.375 0.400 0.460 0.447 0.384 0.402 0.423 0.448 0.426 0.446 0.438 0.433 0.397 0.412 0.395 0.424 0.513 0.491 0.449 0.459 0.865 0.713
192 0.429 0.421 0.512 0.477 0.436 0.429 0.471 0.474 0.454 0.464 0.493 0.466 0.446 0.441 0.469 0.470 0.534 0.504 0.500 0.482 1.008 0.792
336 0.484 0.458 0.546 0.496 0.638 0.469 0.570 0.546 0.493 0.487 0.547 0.495 0.489 0.467 0.530 0.499 0.588 0.535 0.521 0.496 1.107 0.809
720 0.498 0.482 0.544 0.517 0.521 0.500 0.653 0.621 0.526 0.526 0.586 0.538 0.513 0.510 0.598 0.544 0.643 0.616 0.514 0.512 1.181 0.865

Avg 0.447 0.440 0.516 0.484 0.495 0.450 0.529 0.522 0.475 0.480 0.516 0.483 0.461 0.457 0.498 0.484 0.570 0.537 0.496 0.487 1.040 0.795

ET
Th

2

96 0.289 0.341 0.308 0.355 0.340 0.374 0.745 0.584 0.372 0.424 0.322 0.364 0.340 0.394 0.358 0.397 0.476 0.458 0.346 0.388 3.755 1.525
192 0.372 0.392 0.393 0.405 0.402 0.414 0.877 0.656 0.492 0.492 0.404 0.414 0.482 0.479 0.429 0.439 0.512 0.493 0.456 0.452 5.602 1.931
336 0.386 0.414 0.427 0.436 0.452 0.452 1.043 0.731 0.607 0.555 0.435 0.445 0.591 0.541 0.496 0.487 0.552 0.551 0.482 0.486 4.721 1.835
720 0.412 0.434 0.436 0.450 0.462 0.468 1.104 0.763 0.824 0.655 0.447 0.458 0.839 0.661 0.463 0.474 0.562 0.560 0.515 0.511 3.647 1.625

Avg 0.364 0.395 0.391 0.411 0.414 0.427 0.942 0.684 0.574 0.531 0.402 0.420 0.563 0.519 0.437 0.449 0.526 0.516 0.450 0.459 4.431 1.729

ET
Tm

1

96 0.320 0.357 0.352 0.374 0.338 0.375 0.404 0.426 0.365 0.387 0.353 0.370 0.346 0.374 0.379 0.419 0.386 0.398 0.505 0.475 0.672 0.571
192 0.361 0.381 0.390 0.393 0.374 0.387 0.450 0.451 0.403 0.408 0.389 0.387 0.382 0.391 0.426 0.441 0.459 0.444 0.553 0.496 0.795 0.669
336 0.390 0.404 0.421 0.414 0.410 0.411 0.532 0.515 0.436 0.431 0.421 0.408 0.415 0.415 0.445 0.459 0.495 0.464 0.621 0.537 1.212 0.871
720 0.454 0.441 0.462 0.449 0.478 0.450 0.666 0.589 0.489 0.462 0.481 0.441 0.473 0.451 0.543 0.490 0.585 0.516 0.671 0.561 1.166 0.823

Avg 0.381 0.395 0.406 0.407 0.400 0.406 0.513 0.495 0.423 0.422 0.411 0.402 0.404 0.408 0.448 0.452 0.481 0.456 0.588 0.517 0.961 0.734

ET
Tm

2

96 0.175 0.258 0.183 0.270 0.187 0.267 0.287 0.366 0.197 0.296 0.183 0.266 0.193 0.293 0.203 0.287 0.192 0.274 0.255 0.339 0.365 0.453
192 0.237 0.299 0.255 0.314 0.249 0.309 0.414 0.492 0.284 0.361 0.248 0.305 0.284 0.361 0.269 0.328 0.280 0.339 0.281 0.340 0.533 0.563
336 0.298 0.340 0.309 0.347 0.321 0.351 0.597 0.542 0.381 0.429 0.309 0.343 0.382 0.429 0.325 0.366 0.334 0.361 0.339 0.372 1.363 0.887
720 0.391 0.396 0.412 0.404 0.408 0.403 1.730 1.042 0.549 0.522 0.410 0.400 0.558 0.525 0.421 0.415 0.417 0.413 0.433 0.432 3.379 1.338

Avg 0.275 0.323 0.290 0.334 0.291 0.333 0.757 0.610 0.353 0.402 0.287 0.329 0.354 0.402 0.305 0.349 0.306 0.347 0.327 0.371 1.410 0.810
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Table 14: Experiment results under hyperparameter searching for the long-term forecasting task. Avg

is averaged from all four prediction lengths.

Models TimeMixer PatchTST TimesNet Crossformer MICN FiLM DLinear FEDformer Stationary Autoformer Informer
(Ours) 2023 2023a 2023 2023 2022a 2023 2022b 2022b 2021 2021

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

W
ea

th
er

96 0.147 0.197 0.149 0.198 0.172 0.220 0.232 0.302 0.161 0.229 0.199 0.262 0.176 0.237 0.217 0.296 0.173 0.223 0.266 0.336 0.300 0.384
192 0.189 0.239 0.194 0.241 0.219 0.261 0.371 0.410 0.220 0.281 0.228 0.288 0.220 0.282 0.276 0.336 0.245 0.285 0.307 0.367 0.598 0.544
336 0.241 0.280 0.306 0.282 0.246 0.337 0.495 0.515 0.278 0.331 0.267 0.323 0.265 0.319 0.339 0.380 0.321 0.338 0.359 0.395 0.578 0.523
720 0.310 0.330 0.314 0.334 0.365 0.359 0.526 0.542 0.311 0.356 0.319 0.361 0.323 0.362 0.403 0.428 0.414 0.410 0.419 0.428 1.059 0.741

Avg 0.222 0.262 0.241 0.264 0.251 0.294 0.406 0.442 0.242 0.299 0.253 0.309 0.246 0.300 0.309 0.360 0.288 0.314 0.338 0.382 0.634 0.548

So
la

r-
En

er
gy 96 0.167 0.220 0.224 0.278 0.219 0.314 0.181 0.240 0.188 0.252 0.320 0.339 0.289 0.377 0.201 0.304 0.321 0.380 0.456 0.446 0.200 0.247

192 0.187 0.249 0.253 0.298 0.231 0.322 0.196 0.252 0.215 0.280 0.360 0.362 0.319 0.397 0.237 0.337 0.346 0.369 0.588 0.561 0.220 0.251
336 0.200 0.258 0.273 0.306 0.246 0.337 0.216 0.243 0.222 0.267 0.398 0.375 0.352 0.415 0.254 0.362 0.357 0.387 0.595 0.588 0.260 0.287
720 0.215 0.250 0.272 0.308 0.280 0.363 0.220 0.256 0.226 0.264 0.399 0.368 0.356 0.412 0.280 0.397 0.335 0.384 0.733 0.633 0.244 0.301

Avg 0.192 0.244 0.256 0.298 0.244 0.334 0.204 0.248 0.213 0.266 0.369 0.361 0.329 0.400 0.243 0.350 0.340 0.380 0.593 0.557 0.231 0.272

El
ec

tri
ci

ty 96 0.129 0.224 0.129 0.222 0.168 0.272 0.150 0.251 0.164 0.269 0.154 0.267 0.140 0.237 0.193 0.308 0.169 0.273 0.201 0.317 0.274 0.368
192 0.140 0.220 0.147 0.240 0.184 0.322 0.161 0.260 0.177 0.285 0.164 0.258 0.153 0.249 0.201 0.315 0.182 0.286 0.222 0.334 0.296 0.386
336 0.161 0.255 0.163 0.259 0.198 0.300 0.182 0.281 0.193 0.304 0.188 0.283 0.169 0.267 0.214 0.329 0.200 0.304 0.231 0.338 0.300 0.394
720 0.194 0.287 0.197 0.290 0.220 0.320 0.251 0.339 0.212 0.321 0.236 0.332 0.203 0.301 0.246 0.355 0.222 0.321 0.254 0.361 0.373 0.439

Avg 0.156 0.246 0.159 0.253 0.192 0.295 0.186 0.283 0.186 0.295 0.186 0.285 0.166 0.264 0.214 0.321 0.213 0.296 0.227 0.338 0.311 0.397

Tr
af

fic

96 0.360 0.249 0.360 0.249 0.593 0.321 0.514 0.267 0.519 0.309 0.416 0.294 0.410 0.282 0.587 0.366 0.612 0.338 0.613 0.388 0.719 0.391
192 0.375 0.250 0.379 0.256 0.617 0.336 0.549 0.252 0.537 0.315 0.408 0.288 0.423 0.287 0.604 0.373 0.613 0.340 0.616 0.382 0.696 0.379
336 0.385 0.270 0.392 0.264 0.629 0.336 0.530 0.300 0.534 0.313 0.425 0.298 0.436 0.296 0.621 0.383 0.618 0.328 0.622 0.337 0.777 0.420
720 0.430 0.281 0.432 0.286 0.640 0.350 0.573 0.313 0.577 0.325 0.520 0.353 0.466 0.315 0.626 0.382 0.653 0.355 0.660 0.408 0.864 0.472

Avg 0.387 0.262 0.391 0.264 0.620 0.336 0.542 0.283 0.541 0.315 0.442 0.308 0.434 0.295 0.609 0.376 0.624 0.340 0.628 0.379 0.764 0.415

ET
Th

1

96 0.361 0.390 0.370 0.400 0.384 0.402 0.418 0.438 0.421 0.431 0.422 0.432 0.375 0.399 0.376 0.419 0.513 0.491 0.449 0.459 0.865 0.713
192 0.409 0.414 0.413 0.429 0.436 0.429 0.539 0.517 0.474 0.487 0.462 0.458 0.405 0.416 0.420 0.448 0.534 0.504 0.500 0.482 1.008 0.792
336 0.430 0.429 0.422 0.440 0.638 0.469 0.709 0.638 0.569 0.551 0.501 0.483 0.439 0.443 0.459 0.465 0.588 0.535 0.521 0.496 1.107 0.809
720 0.445 0.460 0.447 0.468 0.521 0.500 0.733 0.636 0.770 0.672 0.544 0.526 0.472 0.490 0.506 0.507 0.643 0.616 0.514 0.512 1.181 0.865

Avg 0.411 0.423 0.413 0.434 0.458 0.450 0.600 0.557 0.558 0.535 0.482 0.475 0.423 0.437 0.440 0.460 0.57 0.536 0.496 0.487 1.040 0.795

ET
Th

2

96 0.271 0.330 0.274 0.337 0.340 0.374 0.425 0.463 0.299 0.364 0.323 0.370 0.289 0.353 0.346 0.388 0.476 0.458 0.358 0.397 3.755 1.525
192 0.317 0.402 0.314 0.382 0.231 0.322 0.473 0.500 0.441 0.454 0.391 0.415 0.383 0.418 0.429 0.439 0.512 0.493 0.456 0.452 5.602 1.931
336 0.332 0.396 0.329 0.384 0.452 0.452 0.581 0.562 0.654 0.567 0.415 0.440 0.448 0.465 0.496 0.487 0.552 0.551 0.482 0.486 4.721 1.835
720 0.342 0.408 0.379 0.422 0.462 0.468 0.775 0.665 0.956 0.716 0.441 0.459 0.605 0.551 0.463 0.474 0.562 0.560 0.515 0.511 3.647 1.625

Avg 0.316 0.384 0.324 0.381 0.371 0.404 0.564 0.548 0.588 0.525 0.393 0.421 0.431 0.447 0.433 0.447 0.526 0.516 0.453 0.462 4.431 1.729

ET
Tm

1

96 0.291 0.340 0.293 0.346 0.338 0.375 0.361 0.403 0.316 0.362 0.302 0.345 0.299 0.343 0.379 0.419 0.386 0.398 0.505 0.475 0.672 0.571
192 0.327 0.365 0.333 0.370 0.374 0.387 0.387 0.422 0.363 0.390 0.338 0.368 0.335 0.365 0.426 0.441 0.459 0.444 0.553 0.496 0.795 0.669
336 0.360 0.381 0.369 0.392 0.410 0.411 0.605 0.572 0.408 0.426 0.373 0.388 0.369 0.386 0.445 0.459 0.495 0.464 0.621 0.537 1.212 0.871
720 0.415 0.417 0.416 0.420 0.478 0.450 0.703 0.645 0.481 0.476 0.420 0.420 0.425 0.421 0.543 0.490 0.585 0.516 0.671 0.561 1.166 0.823

Avg 0.348 0.375 0.353 0.382 0.353 0.382 0.514 0.510 0.392 0.413 0.358 0.38 0.357 0.379 0.448 0.452 0.481 0.456 0.588 0.517 0.961 0.733

ET
Tm

2
96 0.164 0.254 0.166 0.256 0.187 0.267 0.275 0.358 0.179 0.275 0.165 0.256 0.167 0.260 0.203 0.287 0.192 0.274 0.255 0.339 0.365 0.453
192 0.223 0.295 0.223 0.296 0.249 0.309 0.345 0.400 0.307 0.376 0.222 0.296 0.224 0.303 0.269 0.328 0.280 0.339 0.281 0.340 0.533 0.563
336 0.279 0.330 0.274 0.329 0.321 0.351 0.657 0.528 0.325 0.388 0.277 0.333 0.281 0.342 0.325 0.366 0.334 0.361 0.339 0.372 1.363 0.887
720 0.359 0.383 0.362 0.385 0.408 0.403 1.208 0.753 0.502 0.490 0.371 0.389 0.397 0.421 0.421 0.415 0.417 0.413 0.422 0.419 3.379 1.388

Avg 0.256 0.315 0.256 0.317 0.291 0.333 0.621 0.510 0.328 0.382 0.259 0.319 0.267 0.332 0.304 0.349 0.306 0.347 0.324 0.368 1.410 0.823
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Unified Hyperparameter

TimeMixer > TimesNet > PatchTST

Searched Hyperparameter

TimeMixer > PatchTST > DLinear

See our paper 
for full results J
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Table 24: Short-term forecasting results in the PEMS datasets with multiple variates. All input lengths
are 96 and prediction lengths are 12. A lower MAE, MAPE or RMSE indicates a better prediction.

Models TimeMixer Scaleformer MTSMixer TSMixer
(Ours) (2023) (2023) (2023)

PEMS03
MAE 14.63 17.66 18.63 15.71

MAPE 14.54 17.58 19.35 15.28
RMSE 23.28 27.51 28.85 25.88

PEMS04
MAE 19.21 22.68 25.57 20.86

MAPE 12.53 14.81 17.79 12.97
RMSE 30.92 35.61 39.92 32.68

PEMS07
MAE 20.57 27.62 25.69 22.97

MAPE 8.62 12.68 11.57 9.93
RMSE 33.59 42.27 39.82 35.68

PEMS08
MAE 15.22 20.74 24.22 18.79

MAPE 9.67 12.81 14.98 10.69
RMSE 24.26 32.77 37.21 26.74

Table 25: Short-term forecasting results in the M4 dataset with a single variate. All prediction lengths
are in [6, 48]. A lower SMAPE, MASE or OWA indicates a better prediction.

Models TimeMixer Scaleformer MTSMixer TSMixer
(Ours) (2023) (2023) (2023)

Yearly
SMAPE 13.206 13.778 20.071 19.845
MASE 2.916 3.176 4.537 4.439
OWA 0.776 0.871 1.185 1.166

Quarterly
SMAPE 9.996 10.727 16.371 16.322
MASE 1.166 1.291 2.216 2.21
OWA 0.825 0.954 1.551 1.543

Monthly
SMAPE 12.605 13.378 18.947 19.248
MASE 0.919 1.104 1.725 1.774
OWA 0.869 0.972 1.468 1.501

Others
SMAPE 4.564 4.972 7.493 7.494
MASE 3.115 3.311 5.457 5.463
OWA 0.982 1.112 1.649 1.651

Weighted SMAPE 11.723 12.978 18.041 18.095
Average MASE 1.559 1.764 2.677 2.674

OWA 0.840 0.921 1.364 1.336

(a) TimeMixer (b) PatchTST (c) TimesNet (d) DLinear

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 9: Prediction cases from ETTh1 by different models under the input-96-predict-96 settings.
Blue lines are the ground truths and orange lines are the model predictions.
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G ADDITIONAL BASELINES

Due to the limitation of the main text, we also include three advanced baselines here: the general multi-
scale framework Scaleformer (Amin Shabani & Sylvain., 2023), two concurrent MLP-based model
MTSMixer (Li et al., 2023) and TSMixer (Chen et al., 2023). Since the latter two baselines were
not officially published during our submission, we adopted their public code and reproduced them
with both unified hyperparameter setting and the hyperparameter searching settings. As presented in
Table 23, 24, 25, TimeMixer still performs best in comparison with these baselines. Showcases of
these additional baselines are also provided in Appendix I for an intuitive comparison.

H SPECTRAL ANALYSIS OF MODEL PREDICTIONS

To demonstrate the advancement of TimeMixer, we plot the spectrum of ground truth and model
predictions. It is observed that TimeMixer captures different frequency parts precisely.

(a) Ground Truth spectrogram (b) TimeMixer spectrogram (c) PatchTST spectrogram

Figure 8: Prediction spectrogram cases from ETTh1 by ground truth and different models under the
input-96-predict-96 settings.

I SHOWCASES

In order to evaluate the performance of different models, we conduct the qualitative compari-
son by plotting the final dimension of forecasting results from the test set of each dataset (Fig-
ures 9, 10, 11, 12, 13, 17, 18). Among the various models, TimeMixer exhibits superior performance.

J LIMITATIONS AND FUTURE WORK

TimeMixer has shown favorable efficiency in GPU memory and running time as we presented in the
main text. However, it should be noted that as the input length increases, the linear mixing layer may
result in a larger number of model parameters, which is inefficient for mobile applications. To address
this issue and improve TimeMixer’s parameter efficiency, we plan to investigate alternative mixing
designs, such as attention-based or CNN-based in future research. In addition, we only focus on the
temporal dimension mixing in this paper, and also plan to incorporate the variate dimension mixing
into model design in our future work. Furthermore, as an application-oriented model, we made a
great effort to verify the effectiveness of our design with experiments and ablations. The theoretical
analysis to verify the optimality and completeness of our design is also a promising direction.

22



Long-term Forecasting

Input-96-Predict-96 in the Solar-Energy dataset

Published as a conference paper at ICLR 2024

Table 24: Short-term forecasting results in the PEMS datasets with multiple variates. All input lengths
are 96 and prediction lengths are 12. A lower MAE, MAPE or RMSE indicates a better prediction.

Models TimeMixer Scaleformer MTSMixer TSMixer
(Ours) (2023) (2023) (2023)

PEMS03
MAE 14.63 17.66 18.63 15.71

MAPE 14.54 17.58 19.35 15.28
RMSE 23.28 27.51 28.85 25.88

PEMS04
MAE 19.21 22.68 25.57 20.86

MAPE 12.53 14.81 17.79 12.97
RMSE 30.92 35.61 39.92 32.68

PEMS07
MAE 20.57 27.62 25.69 22.97

MAPE 8.62 12.68 11.57 9.93
RMSE 33.59 42.27 39.82 35.68

PEMS08
MAE 15.22 20.74 24.22 18.79

MAPE 9.67 12.81 14.98 10.69
RMSE 24.26 32.77 37.21 26.74

Table 25: Short-term forecasting results in the M4 dataset with a single variate. All prediction lengths
are in [6, 48]. A lower SMAPE, MASE or OWA indicates a better prediction.

Models TimeMixer Scaleformer MTSMixer TSMixer
(Ours) (2023) (2023) (2023)

Yearly
SMAPE 13.206 13.778 20.071 19.845
MASE 2.916 3.176 4.537 4.439
OWA 0.776 0.871 1.185 1.166

Quarterly
SMAPE 9.996 10.727 16.371 16.322
MASE 1.166 1.291 2.216 2.21
OWA 0.825 0.954 1.551 1.543

Monthly
SMAPE 12.605 13.378 18.947 19.248
MASE 0.919 1.104 1.725 1.774
OWA 0.869 0.972 1.468 1.501

Others
SMAPE 4.564 4.972 7.493 7.494
MASE 3.115 3.311 5.457 5.463
OWA 0.982 1.112 1.649 1.651

Weighted SMAPE 11.723 12.978 18.041 18.095
Average MASE 1.559 1.764 2.677 2.674

OWA 0.840 0.921 1.364 1.336

(a) TimeMixer (b) PatchTST (c) TimesNet (d) DLinear

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 9: Prediction cases from ETTh1 by different models under the input-96-predict-96 settings.
Blue lines are the ground truths and orange lines are the model predictions.
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Table 3: Short-term forecasting results in the PEMS datasets with multiple variates. All input lengths
are 96 and prediction lengths are 12. A lower MAE, MAPE or RMSE indicates a better prediction.

Models TimeMixer SCINet Crossformer PatchTST TimesNet MICN FiLM DLinear FEDformer Stationary Autoformer Informer
(Ours) (2022a) (2023) (2023) (2023a) (2023) (2022a) (2023) (2022b) (2022b) (2021) (2021)

PEMS03
MAE 14.63 15.97 15.64 18.95 16.41 15.71 21.36 19.70 19.00 17.64 18.08 19.19

MAPE 14.54 15.89 15.74 17.29 15.17 15.67 18.35 18.35 18.57 17.56 18.75 19.58
RMSE 23.28 25.20 25.56 30.15 26.72 24.55 35.07 32.35 30.05 28.37 27.82 32.70

PEMS04
MAE 19.21 20.35 20.38 24.86 21.63 21.62 26.74 24.62 26.51 22.34 25.00 22.05

MAPE 12.53 12.84 12.84 16.65 13.15 13.53 16.46 16.12 16.76 14.85 16.70 14.88
RMSE 30.92 32.31 32.41 40.46 34.90 34.39 42.86 39.51 41.81 35.47 38.02 36.20

PEMS07
MAE 20.57 22.79 22.54 27.87 25.12 22.28 28.76 28.65 27.92 26.02 26.92 27.26

MAPE 8.62 9.41 9.38 12.69 10.60 9.57 11.21 12.15 12.29 11.75 11.83 11.63
RMSE 33.59 35.61 35.49 42.56 40.71 35.40 45.85 45.02 42.29 42.34 40.60 45.81

PEMS08
MAE 15.22 17.38 17.56 20.35 19.01 17.76 22.11 20.26 20.56 19.29 20.47 20.96

MAPE 9.67 10.80 10.92 13.15 11.83 10.76 12.81 12.09 12.41 12.21 12.27 13.20
RMSE 24.26 27.34 27.21 31.04 30.65 27.26 35.13 32.38 32.97 38.62 31.52 30.61

Table 4: Short-term forecasting results in the M4 dataset with a single variate. All prediction lengths
are in [6, 48]. A lower SMAPE, MASE or OWA indicates a better prediction. ⇤. in the Transformers
indicates the name of ⇤former. Stationary means the Non-stationary Transformer.

Models TimeMixer TimesNet N-HiTS N-BEATS⇤ SCINet PatchTST MICN FiLM LightTS DLinear FED. Stationary Auto. Pyra. In.
(Ours) (2023a) (2023) (2019) (2022a) (2023) (2023) (2022a) (2022) (2023) (2022b) (2022b) (2021) (2021) (2021)

Ye
ar

ly SMAPE 13.206 13.387 13.418 13.436 18.605 16.463 25.022 17.431 14.247 16.965 13.728 13.717 13.974 15.530 14.727
MASE 2.916 2.996 3.045 3.043 4.471 3.967 7.162 4.043 3.109 4.283 3.048 3.078 3.134 3.711 3.418
OWA 0.776 0.786 0.793 0.794 1.132 1.003 1.667 1.042 0.827 1.058 0.803 0.807 0.822 0.942 0.881

Q
ua

rte
rly SMAPE 9.996 10.100 10.202 10.124 14.871 10.644 15.214 12.925 11.364 12.145 10.792 10.958 11.338 15.449 11.360

MASE 1.166 1.182 1.194 1.169 2.054 1.278 1.963 1.664 1.328 1.520 1.283 1.325 1.365 2.350 1.401
OWA 0.825 0.890 0.899 0.886 1.424 0.949 1.407 1.193 1.000 1.106 0.958 0.981 1.012 1.558 1.027

M
on

th
ly SMAPE 12.605 12.670 12.791 12.677 14.925 13.399 16.943 15.407 14.014 13.514 14.260 13.917 13.958 17.642 14.062

MASE 0.919 0.933 0.969 0.937 1.131 1.031 1.442 1.298 1.053 1.037 1.102 1.097 1.103 1.913 1.141
OWA 0.869 0.878 0.899 0.880 1.027 0.949 1.265 1.144 0.981 0.956 1.012 0.998 1.002 1.511 1.024

O
th

er
s SMAPE 4.564 4.891 5.061 4.925 16.655 6.558 41.985 7.134 15.880 6.709 4.954 6.302 5.485 24.786 24.460

MASE 3.115 3.302 3.216 3.391 15.034 4.511 62.734 5.09 11.434 4.953 3.264 4.064 3.865 18.581 20.960
OWA 0.982 1.035 1.040 1.053 4.123 1.401 14.313 1.553 3.474 1.487 1.036 1.304 1.187 5.538 5.879

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.723 11.829 11.927 11.851 15.542 13.152 19.638 14.863 13.525 13.639 12.840 12.780 12.909 16.987 14.086
MASE 1.559 1.585 1.613 1.559 2.816 1.945 5.947 2.207 2.111 2.095 1.701 1.756 1.771 3.265 2.718
OWA 0.840 0.851 0.861 0.855 1.309 0.998 2.279 1.125 1.051 1.051 0.918 0.930 0.939 1.480 1.230

⇤ The original paper of N-BEATS (2019) adopts a special ensemble method to promote the performance.
For fair comparisons, we remove the ensemble and only compare the pure forecasting models.

Short-term forecasting TimeMixer also shows great performance in short-term forecasting under
both multivariate and univariate settings (Table 3-4). For PeMS benchmarks that record multiple
time series of citywide traffic networks, due to the complex spatiotemporal correlations among
multiple variates, many advanced models degenerate a lot in this task, such as PatchTST (2023)
and DLinear (2023), which adopt the channel independence design. In contrast, TimeMixer still
performs favourablely in this challenging problem, verifying its effectiveness in handling complex
multivariate time series forecasting. As for the M4 dataset for univariate forecasting, it contains
various temporal variations under different sampling frequencies, including hourly, daily, weekly,
monthly, quarterly, and yearly, which exhibits low predictability and distinctive characteristics across
different frequencies. Remarkably, Timemixer consistently performs best across all frequencies,
affirming the multiscale mixing architecture’s capacity in modeling complex temporal variations.

4.2 MODEL ANALYSIS

Ablations To verify the effectiveness of each component of TimeMixer, we provide detailed ablation
study on every possible design in both Past-Decomposable-Mixing and Future-Multipredictor-Mixing
blocks on all 18 experiment benchmarks. From Table 5, we have the following observations.

The exclusion of Future-Multipredictor-Mixing in ablation ≠ results in a significant decrease in the
model’s forecasting accuracy for both short and long-term predictions. This demonstrates that mixing
future predictions from multiscale series can effectively boost the model performance.

For the past mixing, we verify the effectiveness by removing or replacing components gradually. In
ablations Æ and Ø that remove seasonal mixing and trend mixing respectively, also cause a decline
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(a)TimeMixer (b)SCINet (c) TimesNet (d) Crossformer

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 16: Showcases from PEMS07 by different models under the input-96-predict-12 settings.

(a)TimeMixer (b)SCINet (c) TimesNet (d) Crossformer

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 17: Showcases from PEMS08 by different models under the input-96-predict-12 settings.

(a)TimeMixer (b)SCINet (c) TimesNet (d) PatchTST

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 18: Showcases from the M4 dataset by different models under the input-36-predict-18 settings.
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Short-term Forecasting: Univariate data

M4 datasets

Ø Predict-[6,48] for multifrequency market data
Ø Diverse temporal variations: from hourly to yearly

Diverse 

temporal variations
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Table 3: Short-term forecasting results in the PEMS datasets with multiple variates. All input lengths
are 96 and prediction lengths are 12. A lower MAE, MAPE or RMSE indicates a better prediction.

Models TimeMixer SCINet Crossformer PatchTST TimesNet MICN FiLM DLinear FEDformer Stationary Autoformer Informer
(Ours) (2022a) (2023) (2023) (2023a) (2023) (2022a) (2023) (2022b) (2022b) (2021) (2021)

PEMS03
MAE 14.63 15.97 15.64 18.95 16.41 15.71 21.36 19.70 19.00 17.64 18.08 19.19

MAPE 14.54 15.89 15.74 17.29 15.17 15.67 18.35 18.35 18.57 17.56 18.75 19.58
RMSE 23.28 25.20 25.56 30.15 26.72 24.55 35.07 32.35 30.05 28.37 27.82 32.70

PEMS04
MAE 19.21 20.35 20.38 24.86 21.63 21.62 26.74 24.62 26.51 22.34 25.00 22.05

MAPE 12.53 12.84 12.84 16.65 13.15 13.53 16.46 16.12 16.76 14.85 16.70 14.88
RMSE 30.92 32.31 32.41 40.46 34.90 34.39 42.86 39.51 41.81 35.47 38.02 36.20

PEMS07
MAE 20.57 22.79 22.54 27.87 25.12 22.28 28.76 28.65 27.92 26.02 26.92 27.26

MAPE 8.62 9.41 9.38 12.69 10.60 9.57 11.21 12.15 12.29 11.75 11.83 11.63
RMSE 33.59 35.61 35.49 42.56 40.71 35.40 45.85 45.02 42.29 42.34 40.60 45.81

PEMS08
MAE 15.22 17.38 17.56 20.35 19.01 17.76 22.11 20.26 20.56 19.29 20.47 20.96

MAPE 9.67 10.80 10.92 13.15 11.83 10.76 12.81 12.09 12.41 12.21 12.27 13.20
RMSE 24.26 27.34 27.21 31.04 30.65 27.26 35.13 32.38 32.97 38.62 31.52 30.61

Table 4: Short-term forecasting results in the M4 dataset with a single variate. All prediction lengths
are in [6, 48]. A lower SMAPE, MASE or OWA indicates a better prediction. ⇤. in the Transformers
indicates the name of ⇤former. Stationary means the Non-stationary Transformer.

Models TimeMixer TimesNet N-HiTS N-BEATS⇤ SCINet PatchTST MICN FiLM LightTS DLinear FED. Stationary Auto. Pyra. In.
(Ours) (2023a) (2023) (2019) (2022a) (2023) (2023) (2022a) (2022) (2023) (2022b) (2022b) (2021) (2021) (2021)

Ye
ar

ly SMAPE 13.206 13.387 13.418 13.436 18.605 16.463 25.022 17.431 14.247 16.965 13.728 13.717 13.974 15.530 14.727
MASE 2.916 2.996 3.045 3.043 4.471 3.967 7.162 4.043 3.109 4.283 3.048 3.078 3.134 3.711 3.418
OWA 0.776 0.786 0.793 0.794 1.132 1.003 1.667 1.042 0.827 1.058 0.803 0.807 0.822 0.942 0.881

Q
ua

rte
rly SMAPE 9.996 10.100 10.202 10.124 14.871 10.644 15.214 12.925 11.364 12.145 10.792 10.958 11.338 15.449 11.360

MASE 1.166 1.182 1.194 1.169 2.054 1.278 1.963 1.664 1.328 1.520 1.283 1.325 1.365 2.350 1.401
OWA 0.825 0.890 0.899 0.886 1.424 0.949 1.407 1.193 1.000 1.106 0.958 0.981 1.012 1.558 1.027

M
on

th
ly SMAPE 12.605 12.670 12.791 12.677 14.925 13.399 16.943 15.407 14.014 13.514 14.260 13.917 13.958 17.642 14.062

MASE 0.919 0.933 0.969 0.937 1.131 1.031 1.442 1.298 1.053 1.037 1.102 1.097 1.103 1.913 1.141
OWA 0.869 0.878 0.899 0.880 1.027 0.949 1.265 1.144 0.981 0.956 1.012 0.998 1.002 1.511 1.024

O
th

er
s SMAPE 4.564 4.891 5.061 4.925 16.655 6.558 41.985 7.134 15.880 6.709 4.954 6.302 5.485 24.786 24.460

MASE 3.115 3.302 3.216 3.391 15.034 4.511 62.734 5.09 11.434 4.953 3.264 4.064 3.865 18.581 20.960
OWA 0.982 1.035 1.040 1.053 4.123 1.401 14.313 1.553 3.474 1.487 1.036 1.304 1.187 5.538 5.879

W
ei

gh
te

d
A

ve
ra

ge SMAPE 11.723 11.829 11.927 11.851 15.542 13.152 19.638 14.863 13.525 13.639 12.840 12.780 12.909 16.987 14.086
MASE 1.559 1.585 1.613 1.559 2.816 1.945 5.947 2.207 2.111 2.095 1.701 1.756 1.771 3.265 2.718
OWA 0.840 0.851 0.861 0.855 1.309 0.998 2.279 1.125 1.051 1.051 0.918 0.930 0.939 1.480 1.230

⇤ The original paper of N-BEATS (2019) adopts a special ensemble method to promote the performance.
For fair comparisons, we remove the ensemble and only compare the pure forecasting models.

Short-term forecasting TimeMixer also shows great performance in short-term forecasting under
both multivariate and univariate settings (Table 3-4). For PeMS benchmarks that record multiple
time series of citywide traffic networks, due to the complex spatiotemporal correlations among
multiple variates, many advanced models degenerate a lot in this task, such as PatchTST (2023)
and DLinear (2023), which adopt the channel independence design. In contrast, TimeMixer still
performs favourablely in this challenging problem, verifying its effectiveness in handling complex
multivariate time series forecasting. As for the M4 dataset for univariate forecasting, it contains
various temporal variations under different sampling frequencies, including hourly, daily, weekly,
monthly, quarterly, and yearly, which exhibits low predictability and distinctive characteristics across
different frequencies. Remarkably, Timemixer consistently performs best across all frequencies,
affirming the multiscale mixing architecture’s capacity in modeling complex temporal variations.

4.2 MODEL ANALYSIS

Ablations To verify the effectiveness of each component of TimeMixer, we provide detailed ablation
study on every possible design in both Past-Decomposable-Mixing and Future-Multipredictor-Mixing
blocks on all 18 experiment benchmarks. From Table 5, we have the following observations.

The exclusion of Future-Multipredictor-Mixing in ablation ≠ results in a significant decrease in the
model’s forecasting accuracy for both short and long-term predictions. This demonstrates that mixing
future predictions from multiscale series can effectively boost the model performance.

For the past mixing, we verify the effectiveness by removing or replacing components gradually. In
ablations Æ and Ø that remove seasonal mixing and trend mixing respectively, also cause a decline
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(a)TimeMixer (b)SCINet (c) TimesNet (d) Crossformer

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 16: Showcases from PEMS07 by different models under the input-96-predict-12 settings.

(a)TimeMixer (b)SCINet (c) TimesNet (d) Crossformer

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 17: Showcases from PEMS08 by different models under the input-96-predict-12 settings.

(a)TimeMixer (b)SCINet (c) TimesNet (d) PatchTST

(e) Autoformer (f) Scaleformer (g) MTSMixer (h) TSMixer

Figure 18: Showcases from the M4 dataset by different models under the input-36-predict-18 settings.

27

Input-96-Predict-12 in the M4 dataset



Ablation Studies

Published as a conference paper at ICLR 2024

Table 5: Ablations on both PDM (Decompose, Season Mixing, Trend Mixing) and FMM blocks in M4,
PEMS04 and predict-336 setting of ETTm1. % indicates the bottom-up mixing while . indicates
top-down. A check mark X and a wrong mark ⇥ indicate with and without certain components
respectively. ¨ is the official design in TimeMixer (See Appendix F for complete ablation results).

Case Decompose Past mixing Future mixing M4 PEMS04 ETTm1

Seasonal Trend Multipredictor SMAPE MASE OWA MAE MAPE RMSE MSE MAE

¨ X % . X 11.723 1.559 0.840 19.21 12.53 30.92 0.390 0.404
≠ X % . ⇥ 12.503 1.634 0.925 21.67 13.45 34.89 0.402 0.415

Æ X ⇥ . X 13.051 1.676 0.962 24.49 16.28 38.79 0.411 0.427

Ø X % ⇥ X 12.911 1.655 0.941 22.91 15.02 37.04 0.405 0.414

∞ X . . X 12.008 1.628 0.871 20.78 13.02 32.47 0.392 0.413

± X % % X 11.978 1.626 0.859 21.09 13.78 33.11 0.396 0.415

≤ X . % X 13.012 1.657 0.954 22.27 15.14 34.67 0.412 0.429

≥ ⇥ % X 11.975 1.617 0.851 21.51 13.47 34.81 0.395 0.408

¥ ⇥ . X 11.973 1.622 0.850 21.79 14.03 35.23 0.393 0.406

µ ⇥ ⇥ X 12.468 1.671 0.916 24.87 16.66 39.48 0.405 0.412

of performance. This illustrates that solely relying on seasonal or trend information interaction is
insufficient for accurate predictions. Furthermore, in both ablations ∞ and ±, we employed the same
mixing approach for both seasons and trends. However, it cannot bring better predictive performance.
Similar situation occurs in ≤ that adopts opposite mixing strategies to our design. These results
demonstrate the effectiveness of our design in both bottom-up seasonal mixing and top-down trend
mixing. Concurrently, in ablations ≥ and ¥, we opted to eliminate the decomposition architecture and
mix the multiscale series directly. However, without decomposition, neither bottom-up nor top-down
mixing method can achieve a good performance, indicating the necessity of season-trend separate
mixing. Furthermore, in ablations µ, eliminating the entire Past-Decomposable-Mixing block causes
a serious drop in the model’s predictive performance. The above findings highlight the substantial
influence of an appropriate past mixing method on the final performance of the model. Starting from
the insights in time series, TimeMixer presents the best mixing method in past information extraction.

Seasonal and trend mixing visualization To provide an intuitive understanding of PDM, we
visualize temporal linear weights for seasonal mixing and trend mixing in Figure 3(a)⇠(b). We find
that the seasonal and trend items present distinct mixing properties, where the seasonal mixing layer
presents periodic changes (repeated blue lines in (a)) and the trend mixing layer is dominated by
local aggregations (the dominating diagonal yellow line in (b)). This also verifies the necessity of
adopting separate mixing techniques for seasonal and trend terms. Furthermore, Figure 3(c) shows
the predictions of season and trend terms in fine (scale 0) and coarse (scale 3) scales. We can observe
that the seasonal terms of fine-scale and trend parts of coarse-scale are crucial for accurate predictions.
This observation provides insights for our design in utilizing bottom-up mixing for seasonal terms
and top-down mixing for trend components.

(b) Trend Mixing Weights
(top-down: from 48 to 96)
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Figure 3: Visualization of temporal linear weights in seasonal mixing (Eq. 4), trend mixing (Eq. 5),
and predictions from multiscale season-trend items. All the experiments are on the ETTh1 dataset
under the input-96-predict-96 setting.
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Efficiency Comparison

TimeMixer achieves favorable efficiency in comparing 

with Transformer-based models
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(a) Multiscale mixing (b) Scale 0 (c) Scale 1 (d) Scale 2 (e) Scale 3
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Figure 4: Visualization of predictions from different scales (bxL
m in Eq. 6) on the input-96-predict-96

settings of the ETTh1 dataset. The implementation details are included in Appendix A.

(a)	Memory	Efficiency	Analysis	 (b)	Running	Time	Efficiency	Analysis	
Figure 5: Efficiency analysis in both GPU memory and running time. The results are recorded on the
ETTh1 dataset with batch size as 16. The running time is averaged from 102 iterations.

Multipredictor visualization To provide an intuitive understanding of the forecasting skills of
multiscale series, we plot the forecasting results from different scales for qualitative comparison.
Figure 4(a) presents the overall prediction of our model with Future-Multipredictor-Mixing, which
indicates accurate prediction according to the future variations using mixed scales. To study the
component of each individual scale, we demonstrate the prediction results for each scale in Figure
4(b)⇠(e). Specifically, prediction results from fine-scale time series concentrate more on the detailed
variations of time series and capture seasonal patterns with greater precision. In contrast, as shown in
Figure 4(c)⇠(e), with multiple downsampling, the predictions from coarse-scale series focus more
on macro trends. The above results also highlight the benefits of Future-Multipredictor-Mixing in
utilizing complementary forecasting skills from multiscale series.

Figure 6: Analysis on number of scales
on ETTm1 dataset.

Efficiency analysis We compare the running memory and
time against the latest state-of-the-art models in Figure 5 un-
der the training phase, where TimeMixer consistently demon-
strates favorable efficiency, in terms of both GPU memory
and running time, for various series lengths (ranging from 192
to 3072), in addition to the consistent state-of-the-art perfor-
mances for both long-term and short-term forecasting tasks.

Analysis on number of scales We explore the impact from
the number of scales (M ) in Figure 6 under different series
lengths. Specifically, when M increases, the performance gain
declines for shorter prediction lengths. In contrast, for longer
prediction lengths, the performance improves more as M increases. Therefore, we set M as 3 for
long-term forecast and 1 for short-term forecast to trade off performance and efficiency.

5 CONCLUSION

We presented TimeMixer with a multiscale mixing architecture to tackle the intricate temporal
variations in time series forecasting. Empowered by Past-Decomposable-Mixing and Future-
Multipredictor-Mixing blocks, TimeMixer took advantage of both disentangled variations and
complementary forecasting capabilities. In all of our experiments, TimeMixer achieved consis-
tent state-of-the-art performances in both long-term and short-term forecasting tasks. Moreover,
benefiting from the fully MLP-based architecture, TimeMixer demonstrated favorable run-time
efficiency. Detailed visualizations and ablations are included to provide insights for our design.
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