

TIMESNET: TEMPORAL 2D-VARIATION MODELING FOR GENERAL TIME SERIES ANALYSIS

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, Mingsheng Long[⊠] School of Software, BNRist, Tsinghua University, Beijing 100084, China {whx20,liuyong21,htg21,h-zhou18}@mails.tsinghua.edu.cn {jimwang,mingsheng}@tsinghua.edu.cn

Haixu Wu

Tengge Hu

Yong Liu

Hang Zhou

Jianmin Wang Mingsheng Long

Time Series In Real World

Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

Past Observations

Future Time Series

Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

Time

Time

In Pursing Foundation Models

[Data Universal]

Learn from various modalities

[Task Universal]

Adapt to a wide range of downstream tasks

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.

Classification, Object detection, Segmentation

Classification, Generation

Differences among Image, Language, Time Series

TimesNet is for time series analysis.

www

Differences among Image, Language, Time Series

TimesNet is for time series analysis.

Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.

Differences among Image, Language, Time Series

TimesNet is for time series analysis.

Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.

Each time point only saves some scalars.

Temporal Variations of Time Series

More information of time series is in temporal variations,

such as continuity, periodicity, trend and etc.

Temporal Variation Modeling (Previous work)

TCNs? Locality 😣

Transformers?

Temporal dependencies can be obscured deeply in intricate temporal patterns ⊗

Multi-periodicity View of Time Series

- ✓ Traffic: daily and weekly
- Weather: daily and yearly

Real-world time series usually present multi-periodicity. Multiple periods overlap and interact with each other.

Intraperiod- and Interperiod-variations

Intraperiod: adjacent area, short-term variations

✓ Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.

Overall design

1 Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

Overall design

1 Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

Overall design

1 Multi-periodicity 2 Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D space by reshape

Temporal 2D-variation: A Case Study

- ✓ Reshape the 1D time series
 into 2D according to periods.
- Two dimensions represent
 interperiod- and intraperiod variations respectively.

Temporal 2D-variation: A Case Study

1.5

 \checkmark Reshape the 1D time series -1.0 50 100 0 into 2D according to periods. ✓ Two dimensions represent interperiod- and intraperiod-

variations respectively.

Temporal 2D-variation: A Case Study

Capture Temporal 2D-variations by 2D Kernels

With temporal 2D-variations, we can

- ✓ Unify intraperiod- interperiod-variations
- ✓ Learn representations by 2D kernels

TimesNet

TimesNet consists of residual-connected TimesBlocks.

TimesBlock learns representations in 2D space. (1) $1D \rightarrow 2D$ (2) 2D representation learning (3) $2D \rightarrow 1D$

 $1D \rightarrow 2D$

1. Calculate the spectrum

by Fast Fourier Transform

$$\mathbf{A} = \operatorname{Avg}\left(\operatorname{Amp}\left(\operatorname{FFT}(\mathbf{X}_{1D})\right)\right)$$

 $1D \rightarrow 2D$

1. Calculate the spectrum

by Fast Fourier Transform

2. Choose Topk Frequency

$$\mathbf{A} = \operatorname{Avg}\left(\operatorname{Amp}\left(\operatorname{FFT}(\mathbf{X}_{1\mathrm{D}})\right)\right), \ \{f_1, \cdots, f_k\} = \arg\operatorname{Topk}_{f_* \in \{1, \cdots, [\frac{T}{2}]\}} (\mathbf{A}), \ p_i = \left\lceil \frac{T}{f_i} \right\rceil, i \in \{1, \cdots, k\}.$$

 $1D \rightarrow 2D$

1. Calculate the spectrum by Fast Fourier Transform 2. Choose Topk Frequency 3. For each frequency, reshape 1D time series into 2D tensor

TimesBlock

2D Representation Learning

- ✓ Inception block is shared in all selected periods for parameter efficiency.
- ✓ It can be replaced by any vision backbones, bridging time series and CV.

Experiment: Overall

Tasks	Benchmarks
Forecasting	Long-term: ETT (4 subsets), Electricity, Traffic, Weather, Exchange, ILI
	Short-term: M4 (6 subsets)
Imputation	ETT (4 subsets), Electricity, Weather
Classification	UEA (10 subsets)
Anomaly Detection	SMD, MSL, SMAP, SWaT, PSM

_

-

 \checkmark Five mainstream time series analysis tasks.

✓ 36 datasets, 81 settings, 20+ baselines

Experiment: Overall

TimesNet achieves state-of-the-art in all five tasks!

Model Generality

Better vision backbones,

Better performance Σ

Bridge Time Series and

vision backbones $\underline{\mathbb{Y}}$

Experiment: long-term forecasting

Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2022)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.400 0.406).429 0.425	0.435 0.437	<u>0.403</u> 0.407	0.448 0.452	0.481 0.456	0.588 0.517	0.691 0.607	0.961 0.734	0.929 0.725	0.799 0.671
ETTm2	0.291 0.333).293 <u>0.342</u>	0.409 0.436	0.350 0.401	0.305 0.349	0.306 0.347	0.327 0.371	1.498 0.869	1.410 0.810	1.535 0.900	1.479 0.915
ETTh1	0.458 0.450	0.542 0.510	0.491 0.479	<u>0.456 0.452</u>	0.440 0.460	0.570 0.537	0.496 0.487	0.827 0.703	1.040 0.795	1.072 0.837	1.029 0.805
ETTh2	0.414 0.427).439 0.452	0.602 0.543	0.559 0.515	0.437 <u>0.449</u>	0.526 0.516	0.450 0.459	0.826 0.703	4.431 1.729	2.686 1.494	6.736 2.191
Electricity	0.192 0.295).208 0.323	0.229 0.329	0.212 0.300	0.214 0.327	<u>0.193</u> 0.296	0.227 0.338	0.379 0.445	0.311 0.397	0.272 0.370	0.338 0.422
Traffic	<u>0.620</u> 0.336).621 0.396	0.622 0.392	0.625 0.383	0.610 0.376	0.624	0.628 0.379	0.878 0.469	0.764 0.416	0.705 0.395	0.741 0.422
Weather	0.259 0.287).271 0.334	0.261 0.312	0.265 0.317	0.309 0.360	0.288 0.314	0.338 0.382	0.946 0.717	0.634 0.548	0.696 0.602	0.803 0.656
Exchange	0.416 0.443).410 <u>0.427</u>	<u>0.385</u> 0.447	0.354 0.414	0.519 0.500	0.461 0.454	0.613 0.539	1.913 1.159	1.550 0.998	1.402 0.968	1.280 0.932
ILI	<u>2.139 0.931</u>	2.497 1.004	7.382 2.003	2.616 1.090	2.847 1.144	2.077 0.914	3.006 1.161	7.635 2.050	5.137 1.544	4.839 1.485	4.724 1.445

TimesNet surpasses advanced Transformer-based and MLP-based models.

Experiment: long-term forecasting

Experiment: short-term forecasting

- More complex temporal patterns: M4 dataset is composed of yearly, monthly, weekly, daily, hourly and quarterly collected univariate marketing data.
- \checkmark TimesNet surpasses N-HiTs and N-BEATS.
- \checkmark Simple Linear methods degenerate a lot.

Models	TimesNet (Ours)	N-HiTS (2022)	N-BEATS (2019)	ETSformer (2022)	LightTS (2022)	DLinear (2022)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
SMAPE	11.829	11.927	<u>11.851</u>	14.718	13.525	13.639	12.840	12.780	12.909	16.987	14.086	16.018	18.200
MASE	1.585	1.613	<u>1.599</u>	2.408	2.111	2.095	1.701	1.756	1.771	3.265	2.718	3.010	4.223
OWA	0.851	0.861	<u>0.855</u>	1.172	1.051	1.051	0.918	0.930	0.939	1.480	1.230	1.378	1.775

Experiment: short-term forecasting

Experiment: imputation

- ✓ Averaged from 4 different mask ratios: 12.5%, 25%, 37.5%, 50%
- \checkmark Requires the model to handle irregular inputs.
- \checkmark Non-stationary Transformer performs well but MLP-based models fail in this task.

Models	TimesNet (Ours)	ETSformer (2022)	LightTS (2022)	DLinear (2023)	FEDformer (2022)	Stationary (2022a)	Autoformer (2021)	Pyraformer (2021a)	Informer (2021)	LogTrans (2019)	Reformer (2020)
Metric	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE	MSE MAE
ETTm1	0.027 0.107	0.120 0.253	0.104 0.218	0.093 0.206	60.062 0.177	0.036 0.126	0.051 0.150	0.717 0.570	0.071 0.188	0.050 0.154	0.055 0.166
ETTm2	0.022 0.088	0.208 0.327	0.046 0.151	0.096 0.208	80.101 0.215	<u>0.026</u> 0.099	0.029 0.105	0.465 0.508	0.156 0.292	0.119 0.246	0.157 0.280
ETTh1	0.078 0.187	0.202 0.329	0.284 0.373	0.201 0.306	0.117 0.246	<u>0.094</u> 0.201	0.103 0.214	0.842 0.682	0.161 0.279	0.219 0.332	0.122 0.245
ETTh2	0.049 0.146	0.367 0.436	0.119 0.250	0.142 0.259	0.163 0.279	<u>0.053</u> 0.152	0.055 0.156	1.079 0.792	0.337 0.452	0.186 0.318	0.234 0.352
Electricity	0.092 0.210	0.214 0.339	0.131 0.262	0.132 0.260	0.130 0.259	0.100 0.218	0.101 0.225	0.297 0.382	0.222 0.328	0.175 0.303	0.200 0.313
Weather	0.030 0.054	0.076 0.171	0.055 0.117	0.052 0.110	0.099 0.203	0.032 0.059	0.031 0.057	0.152 0.235	0.045 0.104	0.039 0.076	0.038 0.087

Experiment: imputation

FEDformer

Experiment: classification

✓ TimesNet still achieves the best performance.

✓ Transformer-based models generally outperform MLP-based models

Experiment: anomaly detection

- \checkmark Adopt the reconstruction error as the anomaly criterion.
- ✓ Better 2D backbones bring better performances.
- ✓ Transformer-based models performs well.

8														
Model	TimesNet (ResNeXt)	TimesNet (Inception)	ETS. (2022)	FED. (2022)	LightTS (2022)	DLinear (2023)	Stationary (2022a)	Auto. (2021)	Pyra. (2021a)	Anomaly* (2021)	In. (2021)	Re. (2020)	LogTrans (2019)	Trans. (2017)
SMD	85.81	85.12	83.13	85.08	82.53	77.10	84.72	85.11	83.04	85.49	81.65	75.32	76.21	79.56
MSL	85.15	84.18	85.03	78.57	78.95	84.88	77.50	79.05	84.86	83.31	84.06	84.40	79.57	78.68
SMAP	71.52	70.85	69.50	70.76	69.21	69.26	71.09	71.12	71.09	71.18	69.92	70.40	69.97	69.70
SWaT	91.74	92.10	84.91	93.19	93.33	87.52	79.88	92.74	91.78	83.10	81.43	82.80	80.52	80.37
PSM	97.47	95.21	91.76	97.23	97.15	93.55	<u>97.29</u>	93.29	82.08	79.40	77.10	73.61	76.74	76.07
Avg F1	86.34	<u>85.49</u>	82.87	84.97	84.23	82.46	82.08	84.26	82.57	80.50	78.83	77.31	76.60	76.88

Representation Analysis

Relation between top-bottom layer CKA similarity and performance

✓ Why TimesNet achieves SOTA?

Benefiting from temporal 2D-

variations, it can learn proper

representations for different tasks.

Representation Analysis

Relation between top-bottom layer CKA similarity and performance

\checkmark What is the design principle?

- Classification & imputation need hierarchical representations.
- Anomaly detection & Forecasting expect low-level representations.

Model Performance Ranking

\checkmark After comparing more than 20+ baselines, we get:

Model Ranking	Long-term Forecasting	g Short-term Imputation		Anomaly Detection	Classification
🍈 1st	TimesNet	TimesNet	TimesNet	TimesNet	TimesNet
💩 2nd	DLinear	Non-stationary Transformer	Non-stationary Transformer	Non-stationary Transformer	FEDformer
🍐 3rd	Non-stationary Transformer	FEDformer	Autoformer	Informer	Autoformer

Until 2023.02 (Keep updating)

Efficiency comparison for top 4 models

-			-	-			
Models		Parameter	GPU Memory	Running Time	Ranking		
Series Leng	th	(MB)	(MiB)	(s / iter)	Five tasks	Avg Ranking	
TimesNet (ours)	384 768 1536 3072	0.067 0.067 0.067 0.067	1245 1585 2491 2353	0.024 0.040 0.045 0.073	(1, 1, 1, 1, 1)	1.0	
Non-stationary Transformer	384 768 1536 3072	1.884 1.910 1.961 /	2321 4927 / /	0.046 0.118 / /	(3, 2, 2, 2, 8)	3.4	
Autoformer	384 768 1536 3072	1.848 1.848 1.848 1.848	2101 3209 5395 10043	0.070 0.071 0.129 0.255	(7, 4, 3, 5, 3)	4.4	
FEDformer	384 768 1536 3072	2.901 2.901 2.901 2.901	5977 7111 9173 /	0.807 1.055 1.482 /	(4, 3, 6, 9, 2)	4.8	

Open Source

🛱 thuml / Time-Series-Libra	ary (Public)			(ি☆ Edit Pins ▾ ⓒ Watch 9 ▾	♥ Fork 80 ▼ 🔶 Starred 390 ▼
<> Code	Pull requests 🕑 Actions 🗄 Projects	🕮 Wiki 🕕 Security 🗠 Insights	භි Settings			
	🐉 main 👻 🎖 1 branch 🔊 0 tags		Go to file Add file -	<> Code -	About	愈
	wuhaixu2016 Update README.md		fb2ef74 2 days ago 🕚	49 commits	A Library for Advanced Deep T Series Models.	ime
	data_provider	add MICN and corresponding scripts		last week	deep-learning time-series	
	exp	add Crossformer and corresponding scrip	ts	2 days ago	🛱 Readme	
	ayers	Merge remote-tracking branch 'origin/mai	n'	2 days ago	MIT license ABO store	
	in models	add Crossformer and corresponding scrip	ts	2 days ago	 9 watching 	
	p ic	update dataset discription	:	3 weeks ago	양 80 forks	
	scripts	add Crossformer and corresponding scrip	ts			
	🖿 utils	add MICN and corresponding scripts		last week	Releases	
	🗋 .gitignore	add Crossformer and corresponding scrip	ts	2 days ago	No releases published Create a new release	
		init		last month		
	🗋 README.md	Update README.md		2 days ago	Packages	
	C requirements.txt	Update requirements.txt		2 weeks ago	No packages published	
	🗋 run.py	add MICN and corresponding scripts		last week	Publish your first package	
	i≡ README.md			Ø	Contributors 3	
	Time Series Libra	ry (TSlib)			wuhaixu2016	
	TSlib is an open-source library for	deep learning researchers, especially dee	ep time series analysis.		ZDandsomSD	
	We provide a neat code base to ev	valuate advanced deep time series models	vhich			
	covers five mainstream tasks: long classification.	y- and short-term forecasting, imputation	on, anomaly detection, and		Languages	

Code is available at https://github.com/thuml/Time-Series-Library

Thank You! whx20@mails.tsinghua.edu.cn