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ABSTRACT

Time series analysis is of immense importance in extensive applications, such as
weather forecasting, anomaly detection, and action recognition. This paper focuses
on temporal variation modeling, which is the common key problem of extensive
analysis tasks. Previous methods attempt to accomplish this directly from the 1D
time series, which is extremely challenging due to the intricate temporal patterns.
Based on the observation of multi-periodicity in time series, we ravel out the com-
plex temporal variations into the multiple intraperiod- and interperiod-variations.
To tackle the limitations of 1D time series in representation capability, we extend
the analysis of temporal variations into the 2D space by transforming the 1D time
series into a set of 2D tensors based on multiple periods. This transformation can
embed the intraperiod- and interperiod-variations into the columns and rows of
the 2D tensors respectively, making the 2D-variations to be easily modeled by 2D
kernels. Technically, we propose the TimesNet with TimesBlock as a task-general
backbone for time series analysis. TimesBlock can discover the multi-periodicity
adaptively and extract the complex temporal variations from transformed 2D ten-
sors by a parameter-efficient inception block. Our proposed TimesNet achieves
consistent state-of-the-art in five mainstream time series analysis tasks, including
short- and long-term forecasting, imputation, classification, and anomaly detection.
Code is available at this repository: https://github.com/thuml/TimesNet.

1 INTRODUCTION

Time series analysis is widely used in extensive real-world applications, such as the forecasting of
meteorological factors for weather prediction (Wu et al., 2021), imputation of missing data for data
mining (Friedman, 1962), anomaly detection of monitoring data for industrial maintenance (Xu et al.,
2021) and classification of trajectories for action recognition (Franceschi et al., 2019). Because of its
immense practical value, time series analysis has received great interest (Lim & Zohren, 2021).

Different from other types of sequential data, such as language or video, time series is recorded
continuously and each time point only saves some scalars. Since one single time point usually cannot
provide sufficient semantic information for analysis, many works focus on the temporal variation,
which is more informative and can reflect the inherent properties of time series, such as the continuity,
periodicity, trend and etc. However, the variations of real-world time series always involve intricate
temporal patterns, where multiple variations (e.g. rising, falling, fluctuation and etc.) mix and overlap
with each other, making the temporal variation modeling extremely challenging.

Especially in the deep learning communities, benefiting from the powerful non-linear modeling
capacity of deep models, many works have been proposed to capture the complex temporal variations
in real-world time series. One category of methods adopts recurrent neural networks (RNN) to
model the successive time points based on the Markov assumption (Hochreiter & Schmidhuber,
1997; Lai et al., 2018; Shen et al., 2020). However, these methods usually fail in capturing the long-
term dependencies and their efficiency suffers from the sequential computation paradigm. Another
category of methods utilizes the convolutional neural network along the temporal dimension (TCN)
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In Pursing Foundation Models

Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021. 
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Foundation Models in CV and NLP

Universal backbone with 
task-specific heads for different tasks.

Classification, Object detection, Segmentation Classification, Generation
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TimesNet is for time series analysis.
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Temporal Variations of Time Series
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Temporal Variation Modeling (Previous work)
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Multi-periodicity View of Time Series

Real-world time series usually present multi-periodicity.

Multiple periods overlap and interact with each other.
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Intraperiod- and Interperiod-variations

ü Intraperiod: adjacent area, short-term variations

ü Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.
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① Multi-periodicity

A modular architecture to disentangle intricate temporal patterns

1D Time Series has limitations 

in representation capability.



Overall design

① Multi-periodicity  ② Temporal 2D-variation

Unify intraperiod- and interperiod-variations in 2D space by reshape
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Temporal 2D-variation: A Case Study

With temporal 2D-variations, we can
ü Unify intraperiod- interperiod-variations

ü Learn representations by 2D kernels



TimesNet

TimesNet consists of residual-connected TimesBlocks.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.

{Xl,1
2D , · · · ,Xl,k

2D }

{bXl,1
2D , · · · , bXl,k

2D }

{bXl,1
1D , · · · , bXl,k

1D }

Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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(6)

Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
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2D kernels (right part) and fuse them based on the normalized amplitude values.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Adaptive aggregation Finally, we fuse the k different processed features w.r.t their corresponding
amplitudes of the estimated periods as follows:
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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Figure 3: Overall architecture of TimesNet. The TimesBlock (left part) can extract the various
informative features from the k different reshaped time series by a shared MSUnit with multi-scale
2D kernels (right part) and fuse them based on the normalized amplitude values.

can conducted representation learning by parameter-efficient inception block conveniently.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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where Xl,i
2D 2 R(fi⇥pi)⇥dmodel is the transformed 2D tensor. After the transformation, we process the

2D tensor by a parameter-efficient inception block (Szegedy et al., 2015), which involves multi-scale
2D kernels and is one of the most well-acknowledged vision backbone. Then we transform the
processed 2D feature into bXl,i

2D back to 1D tensor bXl,i
1D 2 RT⇥dmodel for aggregation by Trunc(·) to

truncate the padding series into original length. Note that benefiting from the transformation of 1D
time series, the 2D kernels in inception block can aggregate the multi-scale intraperiod-variation
(columns) and interperiod-variation (rows) simultaneously. Besides, the parameter sharing deign
makes the model size invariant to the selection of the number of periods k.
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Since the temporal variations are involved in the multiple highly-structured 2D tensors, the de-
sign of TimesBlock can fully capture the multi-scale temporal 2D-variations from multiple views
simultaneously, making the representatin learning more effective.

Generality in 2D vision backbones Since we transform the 1D time series into 2D space, we can
also choose various vision backbones to replace the inception module for representation learning,
such as the widely-used ResNet (He et al., 2016) and ResNext (Xie et al., 2017), advanced ConvNext
(Liu et al., 2022b) and attention-based models (Liu et al., 2021b). Thus, our temporal 2D-variation
design also bridges the 1D time series and the booming 2D vision backbones, making the time series
analysis take advantage of the development of vision community. For efficiency, we conduct the main
experiments based on the parameter-efficient inception block as Equation 5.
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ü Reshape back to 1D space for 𝑘
different representations.

ü Aggregate 𝑘 different representations
based on the periods’ amplitudes 𝐀:



Experiment: Overall

ü Five mainstream time series analysis tasks.
ü 36 datasets, 81 settings, 20+ baselines



Experiment: Overall

TimesNet achieves state-of-the-art in all five tasks!



Model Generality

Better vision backbones, 

Better performance 🏆

Our choice
Bridge Time Series and 

vision backbones🏆



Experiment: long-term forecasting

TimesNet surpasses advanced Transformer-based and MLP-based models.



Experiment: long-term forecasting



Experiment: short-term forecasting

ü More complex temporal patterns: M4 dataset is composed of yearly, monthly, 

weekly, daily, hourly and quarterly collected univariate marketing data.

ü TimesNet surpasses N-HiTs and N-BEATS.

ü Simple Linear methods degenerate a lot.



Experiment: short-term forecasting



Experiment: imputation
ü Averaged from 4 different mask ratios: 12.5%, 25%, 37.5%, 50%

ü Requires the model to handle irregular inputs.

ü Non-stationary Transformer performs well but MLP-based models fail in this task.



Experiment: imputation



Experiment: classification

ü TimesNet still achieves the best performance.

ü Transformer-based models generally outperform MLP-based models



Experiment: anomaly detection

ü Adopt the reconstruction error as the anomaly criterion.

ü Better 2D backbones bring better performances.

ü Transformer-based models performs well.



Representation Analysis
Relation between top-bottom layer 

CKA similarity and performance

ü Why TimesNet achieves SOTA?

Benefiting from temporal 2D-

variations, it can learn proper 

representations for different tasks.



Representation Analysis
Relation between top-bottom layer 

CKA similarity and performance

ü What is the design principle?

- Classification & imputation need 

hierarchical representations.

- Anomaly detection & Forecasting 

expect low-level representations.



Model Performance Ranking

üAfter comparing more than 20+ baselines, we get:

Until 2023.02 (Keep updating)



Efficiency comparison for top 4 models



Open Source

Code is available at https://github.com/thuml/Time-Series-Library

https://github.com/thuml/Time-Series-Library
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