

清华大学
Tsinghua University

From Transolver to Transolver-3: Scaling Neural Solvers to Industrial-Scale Geometries

Haixu Wu

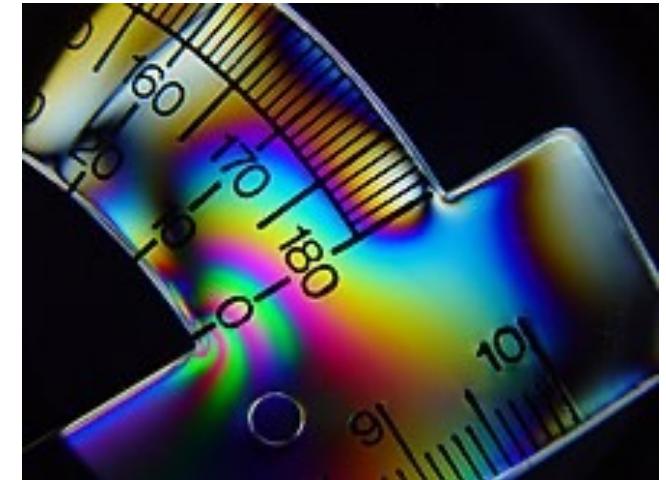
MIT CSAIL & THUML

Feb 04, 2026

Real-world Phenomena

Turbulence

Atmospheric circulation



Stress

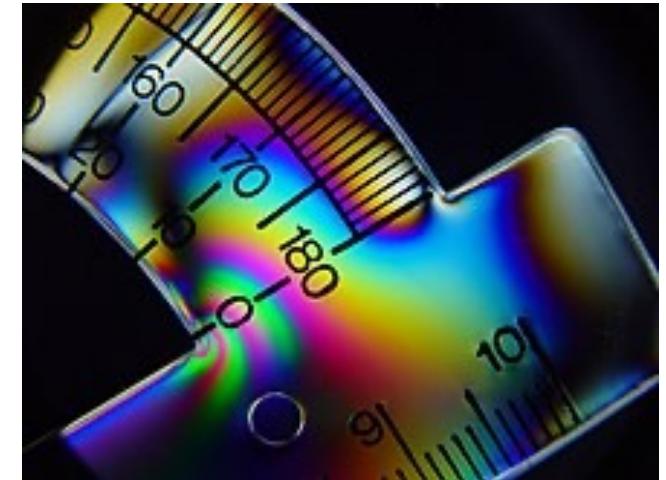
How to understand the world?

Images? Videos? World Model?

Real-world Phenomena

Turbulence

Atmospheric circulation

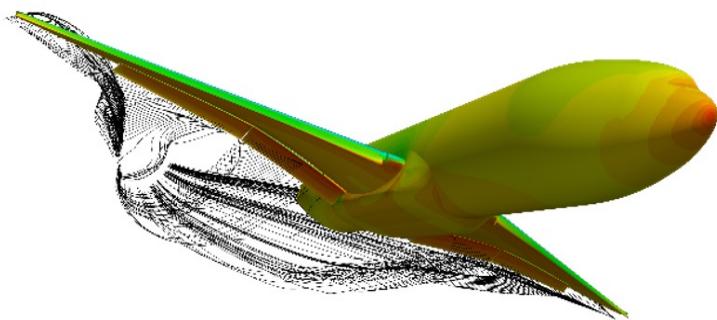
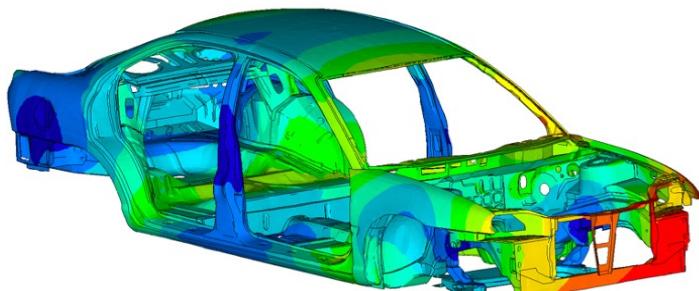


Stress

Beyond appearances, these phenomena are governed by **scientific rules**.

Partial Differential Equations

Extensive physics processes can be precisely described as PDEs.



$$\frac{\partial v_x}{\partial x} + \frac{\partial v_y}{\partial y} + \frac{\partial v_z}{\partial z} = 0$$
$$\rho \left(\frac{\partial v_x}{\partial t} + v_x \frac{\partial v_x}{\partial x} + v_y \frac{\partial v_x}{\partial y} + v_z \frac{\partial v_x}{\partial z} \right) = -\frac{\partial P}{\partial x} + \mu \left(\frac{\partial^2 v_x}{\partial x^2} + \frac{\partial^2 v_x}{\partial y^2} + \frac{\partial^2 v_x}{\partial z^2} \right) + \rho g_x$$
$$\rho \left(\frac{\partial v_y}{\partial t} + v_x \frac{\partial v_y}{\partial x} + v_y \frac{\partial v_y}{\partial y} + v_z \frac{\partial v_y}{\partial z} \right) = -\frac{\partial P}{\partial y} + \mu \left(\frac{\partial^2 v_y}{\partial x^2} + \frac{\partial^2 v_y}{\partial y^2} + \frac{\partial^2 v_y}{\partial z^2} \right) + \rho g_y$$
$$\rho \left(\frac{\partial v_z}{\partial t} + v_x \frac{\partial v_z}{\partial x} + v_y \frac{\partial v_z}{\partial y} + v_z \frac{\partial v_z}{\partial z} \right) = -\frac{\partial P}{\partial z} + \mu \left(\frac{\partial^2 v_z}{\partial x^2} + \frac{\partial^2 v_z}{\partial y^2} + \frac{\partial^2 v_z}{\partial z^2} \right) + \rho g_z$$

3-D Navier-Stokes equations

$$\varepsilon_{xx} = \frac{\partial u_x}{\partial x}, \quad \varepsilon_{yy} = \frac{\partial u_y}{\partial y}, \quad \varepsilon_{zz} = \frac{\partial u_z}{\partial z}$$
$$\varepsilon_{xy} = \frac{1}{2} \left(\frac{\partial u_x}{\partial y} + \frac{\partial u_y}{\partial x} \right), \quad \varepsilon_{xz} = \frac{1}{2} \left(\frac{\partial u_x}{\partial z} + \frac{\partial u_z}{\partial x} \right), \quad \varepsilon_{yz} = \frac{1}{2} \left(\frac{\partial u_y}{\partial z} + \frac{\partial u_z}{\partial y} \right)$$

3-D Stress-Strain relations

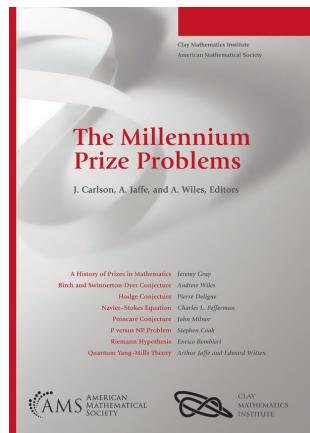
Difficulties in Solving PDEs

David Hilbert

John von Neumann

Peter Lax

Richard Courant



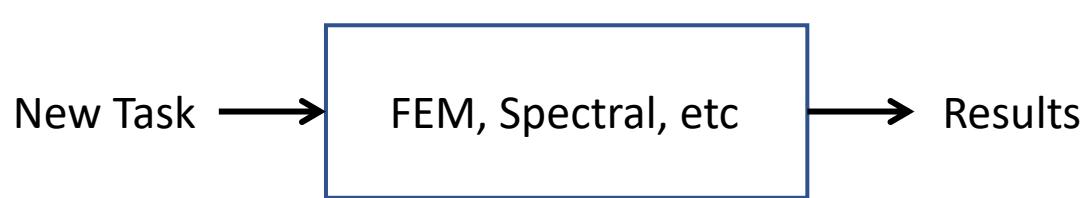
Millennium Prize Problems

- Birch and Swinnerton-Dyer conjecture
- Hodge conjecture
- **Navier–Stokes existence and smoothness**
- P versus NP problem
- Riemann hypothesis
- Yang–Mills existence and mass gap
- Poincaré conjecture (Solved)

It is hard (usually impossible) to obtain the analytic solution of PDEs

PDE Solvers

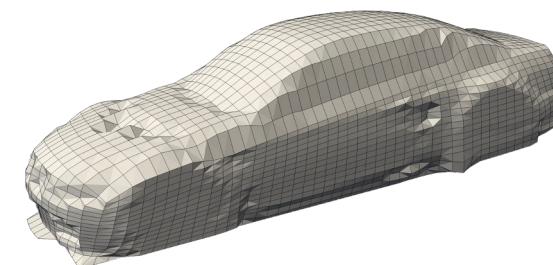
Classic Numerical Methods



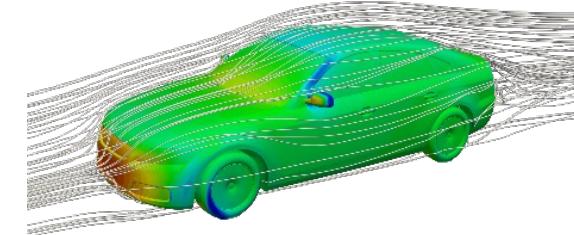
- Recalculation for every new sample
- Each round will incur huge costs

Stable vs. Slow and Discretized

Discretized Mesh

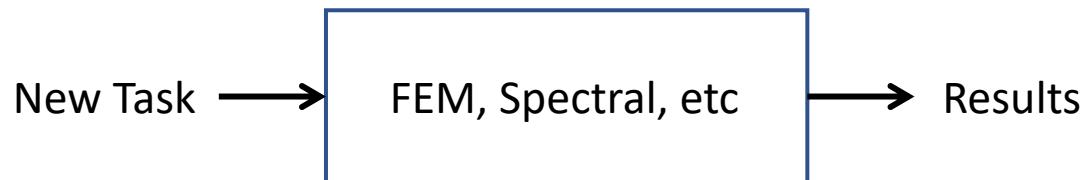


Days or even Months



PDE Solvers

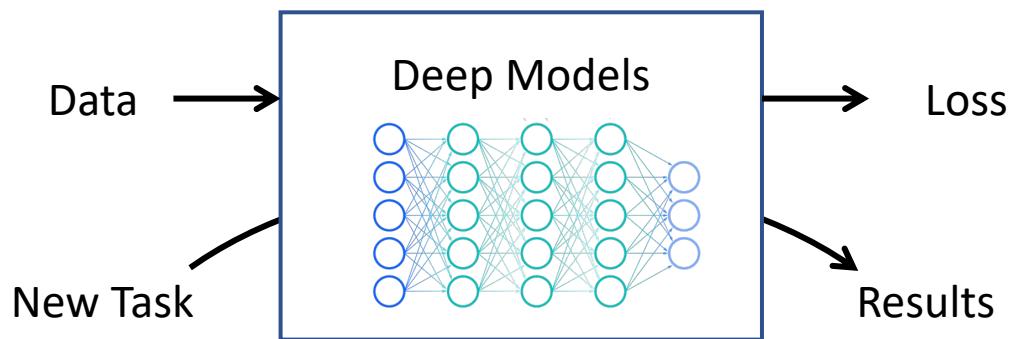
Classic Numerical Methods



- Recalculation for every new sample
- Each round will incur huge costs

Stable vs. Slow and Discretized

Neural PDE Solvers



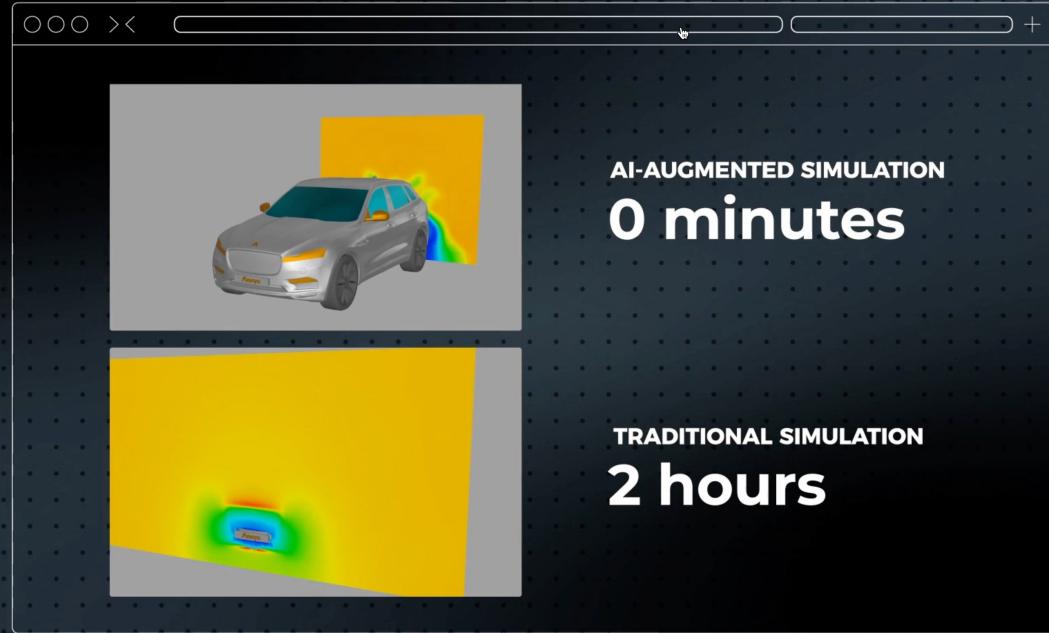
- Training once, inference a lot
- Each round needs several seconds

**An efficient / precise surrogate tool
(Ideally)**

A Valuable Direction

Ansys SimAI

Predict at the Speed of AI



000 >< C

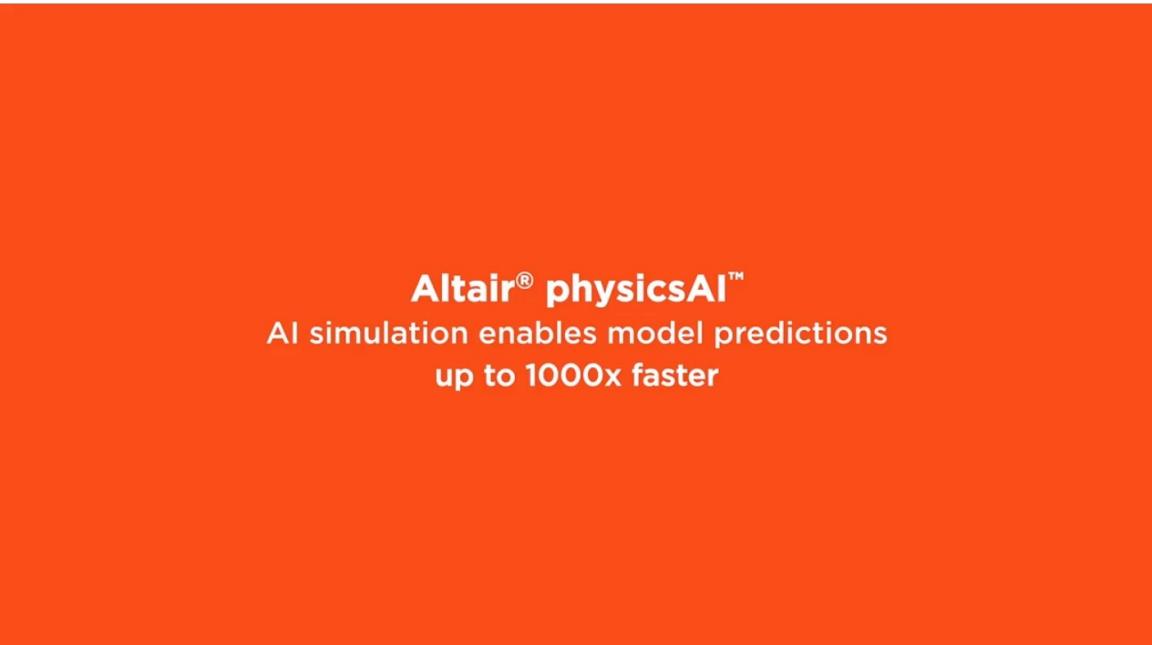
AI-AUGMENTED SIMULATION
0 minutes

TRADITIONAL SIMULATION
2 hours

<https://www.ansys.com/products/simai>

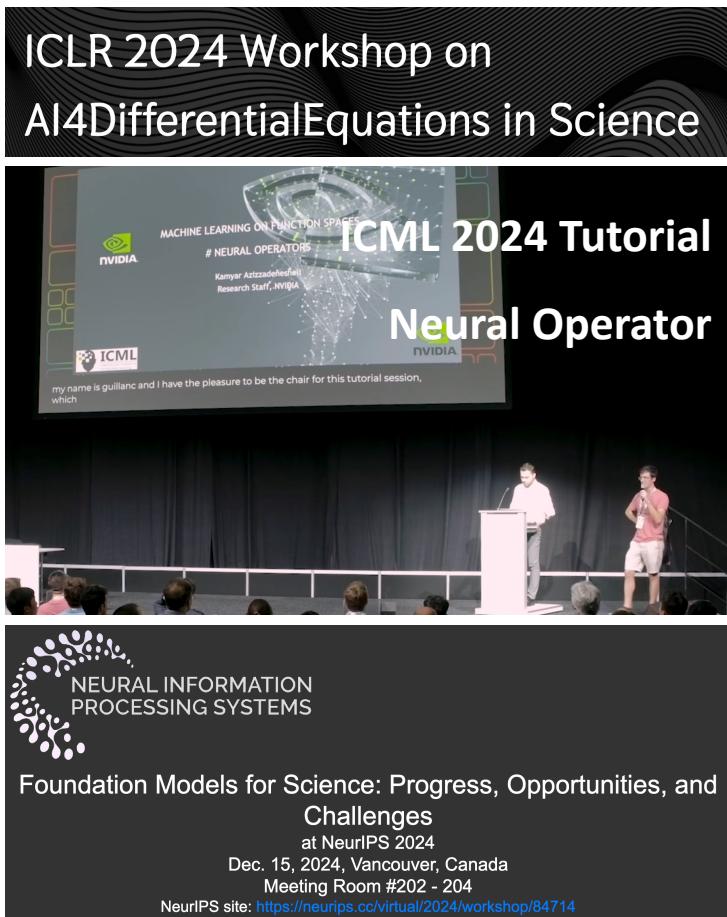
Altair® PhysicsAI™ Geometric Deep Learning

Better Design Insights Up to 1000x Faster than Solver Simulation

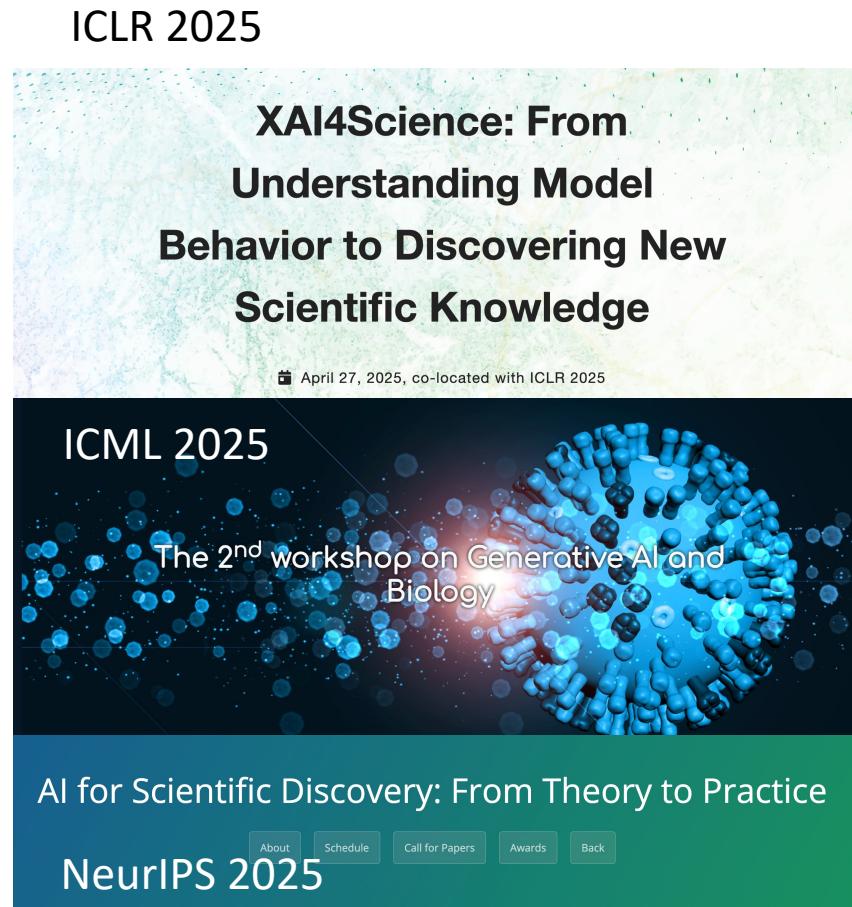


<https://altair.com/physicsai>

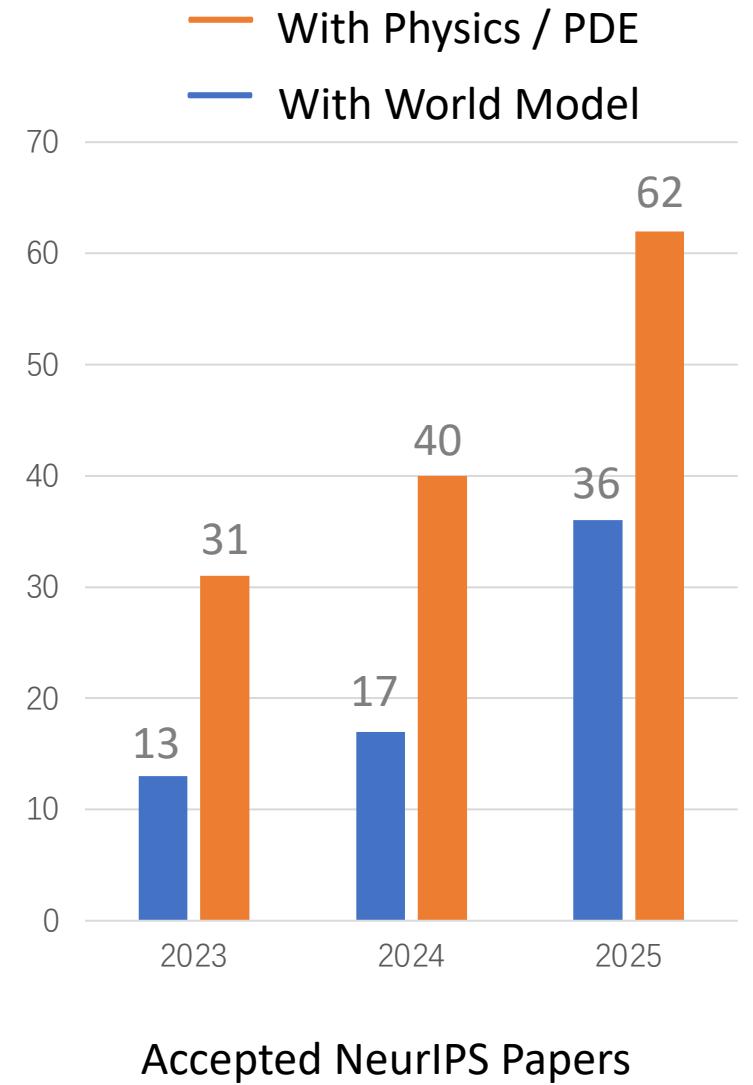
A Booming Direction



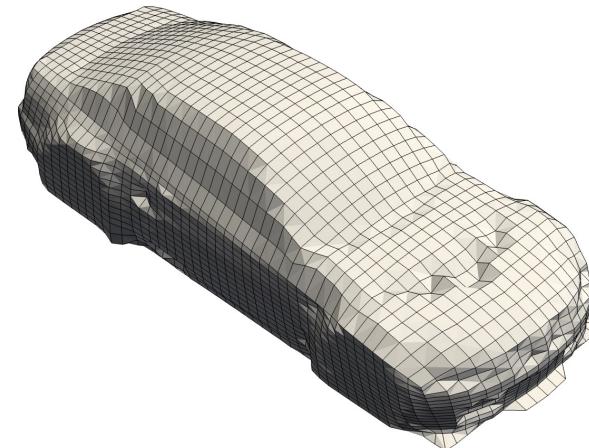
2024



2025



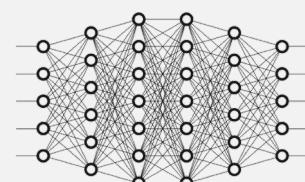
Towards Practical Neural PDE Solvers



Complex Geometries

Large-scale Meshes

Diverse PDEs, e.g. boundaries, coefficients, forces



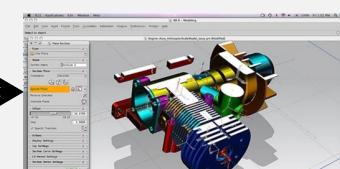
LSM
(ICML 2023)

Transolver
(ICML 2024)

Transolver++
(ICML 2025)

Unisolver
(ICML 2025)

Transolver-3
(arXiv 2026)



Transolver: A Fast Transformer Solver for PDEs on General Geometries

Haixu Wu¹ Huakun Luo¹ Haowen Wang¹ Jianmin Wang¹ Mingsheng Long¹

Haixu Wu

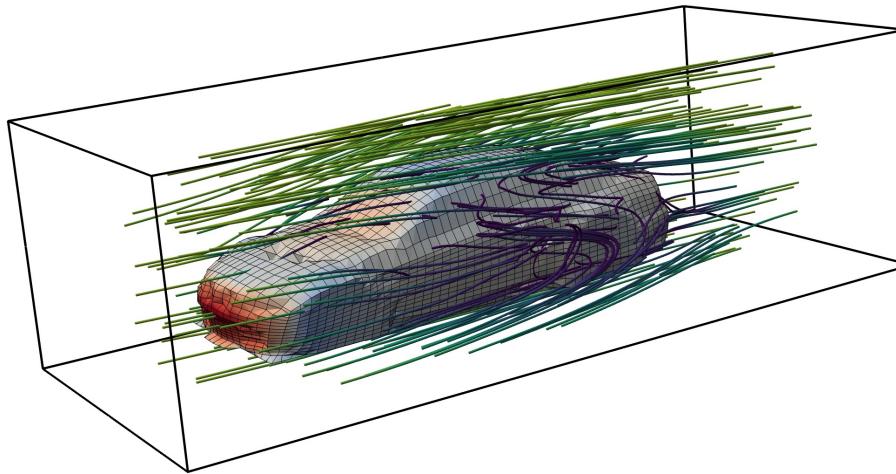
Huakun Luo

Haowen Wang

Jianmin Wang

Mingsheng Long

Challenges in Practical Industrial Design

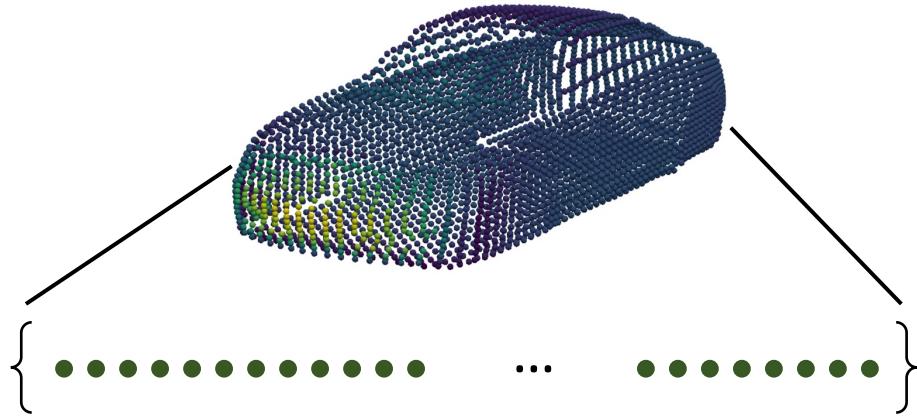
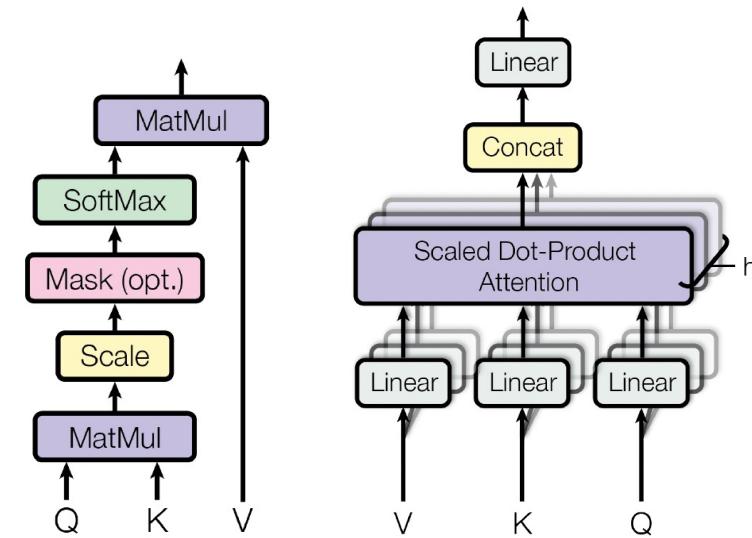


Task: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

1. Large-scale meshes → **Huge computation cost**
2. Complex and unstructured geometrics → **Complex geometric learning**
3. Naiver-Stokes equation → **Intricate physical correlations**

Transformer-based PDE Solvers



(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

Attention Mechanism as Global Integral

Lemma A.1. *The canonical attention mechanism in Transformers is a Monte-Carlo approximation of an integral operator.*

Proof. Given input function $\mathbf{u} : \Omega \rightarrow \mathbb{R}^C$, the integral operation \mathcal{G} defined on the function space $\Omega \rightarrow \mathbb{R}^C$ is formalized as:

$$\mathcal{G}(\mathbf{u})(\mathbf{g}^*) = \int_{\Omega} \kappa(\mathbf{g}^*, \xi) \mathbf{u}(\xi) d\xi, \quad \text{Attention weight as kernel function}$$

where $\mathbf{g}^* \in \Omega \subset \mathbb{R}^{C_g}$ and $\kappa(\cdot, \cdot)$ denotes the kernel function defined on Ω . According to the formalization of attention, we propose to define the kernel function as follows:

$$\kappa(\mathbf{g}^*, \xi) = \left(\int_{\Omega} \exp \left((\mathbf{W}_q \mathbf{u}(\xi')) (\mathbf{W}_k \mathbf{u}(\xi))^T \right) d\xi' \right)^{-1} \exp \left((\mathbf{W}_q \mathbf{u}(\mathbf{g}^*)) (\mathbf{W}_k \mathbf{u}(\xi))^T \right) \mathbf{W}_v, \quad (8)$$

where $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v \in \mathbb{R}^{C \times C}$.

Dot-product Similarity

Suppose that there are N discretized mesh points $\{\mathbf{g}_1, \dots, \mathbf{g}_N\}$, where $\mathbf{g}_i \in \Omega \subset \mathbb{R}^{C_g}$. Approximating the inner-integral in Eq. (8) by Monte-Carlo, we have:

$$\int_{\Omega} \exp \left((\mathbf{W}_q \mathbf{u}(\xi')) (\mathbf{W}_k \mathbf{u}(\xi))^T \right) d\xi' \approx \frac{|\Omega|}{N} \sum_{i=1}^N \exp \left((\mathbf{W}_q \mathbf{u}(\mathbf{g}_i)) (\mathbf{W}_k \mathbf{u}(\xi))^T \right).$$

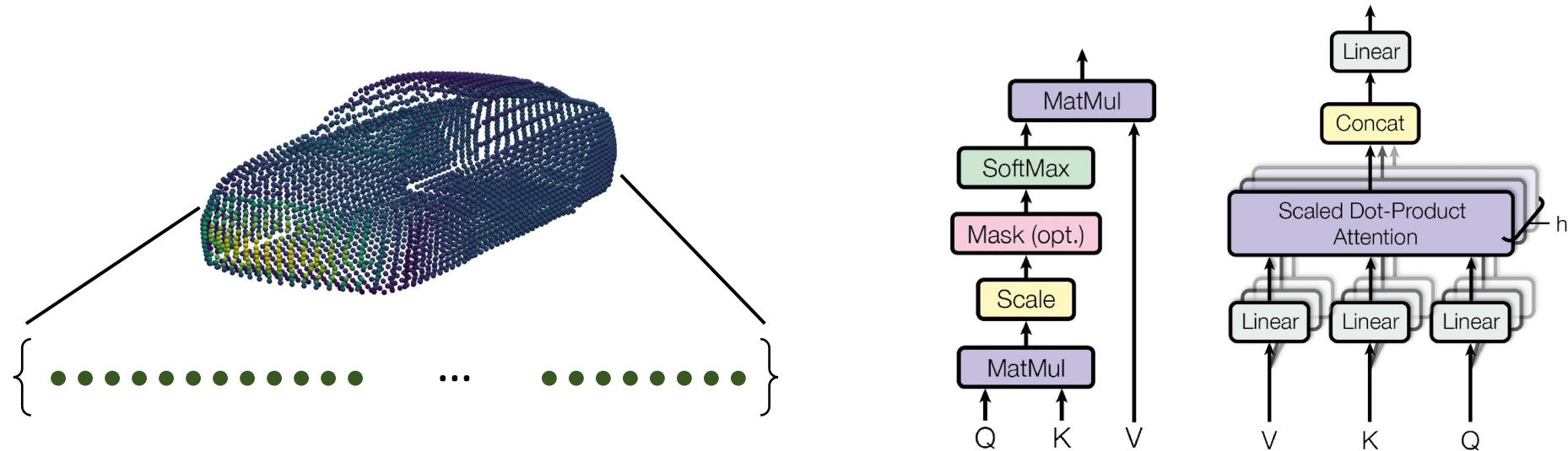
Use the token sequence as an approximation of the integral

Applying the above equation to Eq. (7) and using the same approximation for the outer-integral, we have:

$$\mathcal{G}(\mathbf{u})(\mathbf{g}^*) \approx \sum_{i=1}^N \frac{\exp \left((\mathbf{W}_q \mathbf{u}(\mathbf{g}^*)) (\mathbf{W}_k \mathbf{u}(\mathbf{g}_i))^T \right) \mathbf{W}_v \mathbf{u}(\mathbf{g}_i)}{\sum_{j=1}^N \exp \left((\mathbf{W}_q \mathbf{u}(\mathbf{g}_j)) (\mathbf{W}_k \mathbf{u}(\mathbf{g}_i))^T \right)}, \quad (10)$$

which is the calculation of the attention mechanism with $\mathbf{W}_q, \mathbf{W}_k, \mathbf{W}_v$ as linear layers for queries, keys and values. \square

Transformer-based PDE Solvers

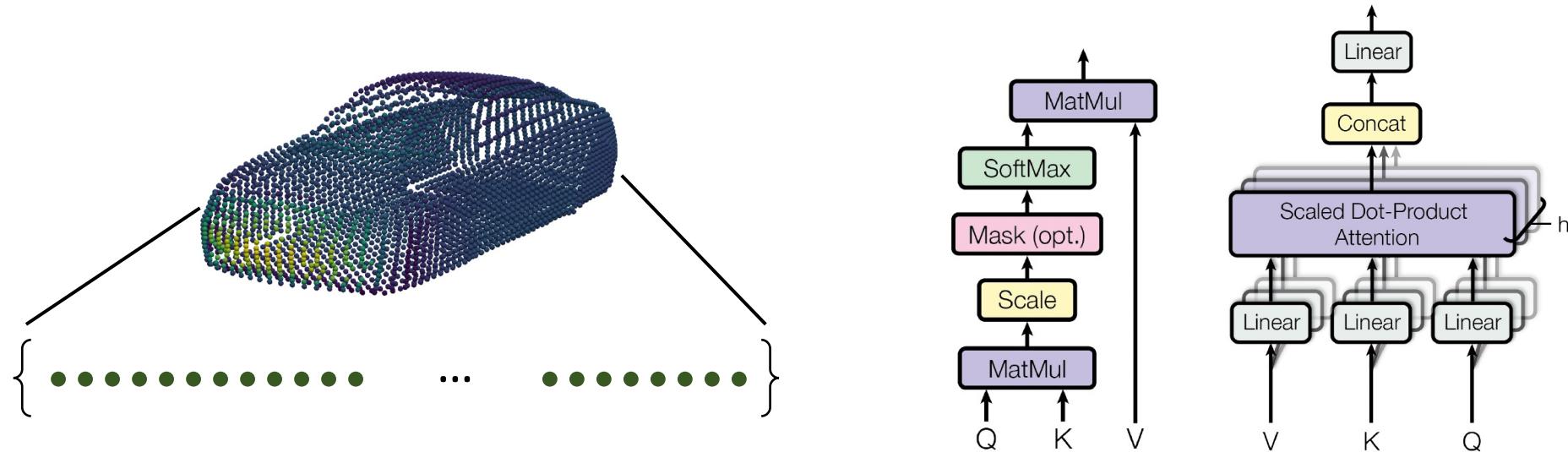


(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

1. **Quadratic complexity**
2. **Hard to capture physical correlations among massive points**

Transformer-based PDE Solvers



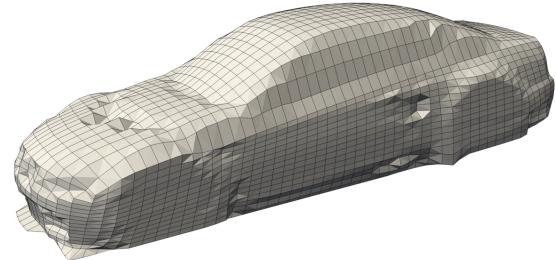
(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

How to efficiently capture physical correlations underlying discretized meshes

is the key to “transform” Transformers into practical PDE solvers

A Foundational Idea of Transolver



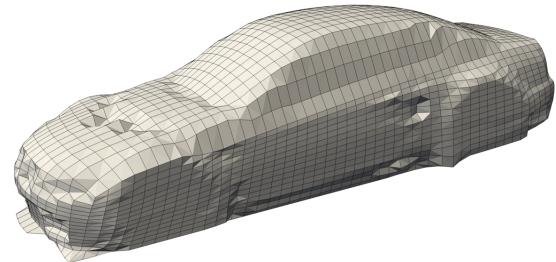
Discretized Domain

Previous Work

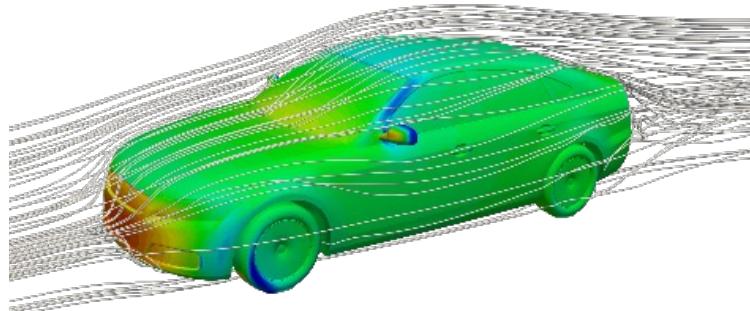
Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics

A Foundational Idea of Transolver



Discretized Domain



Physics Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

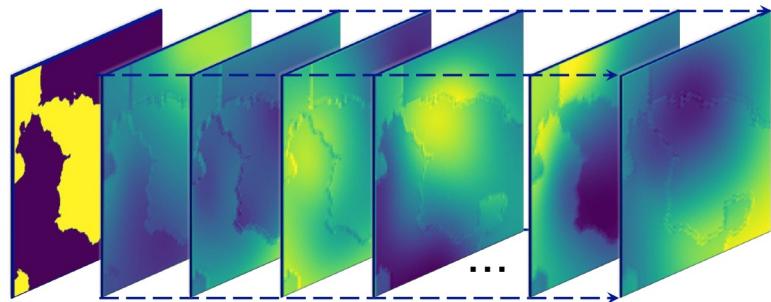
Difficulties in Complexity, Geometry, Physics

Transolver

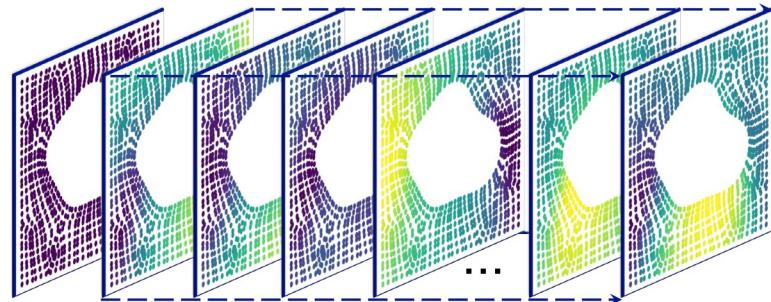
Learning **intrinsic physical states** underlying
complex and large-scale geometries

Better Efficiency, Geometry, Physics Modeling

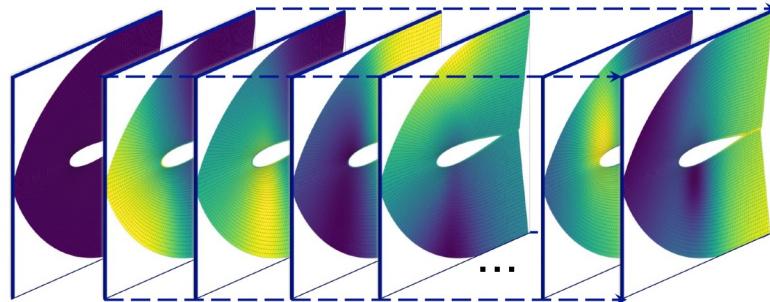
Learning Physical States



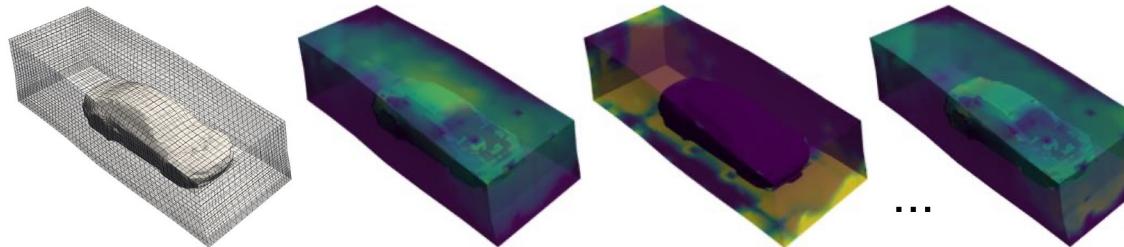
(a) Slices for Darcy, 2D Regular Grid



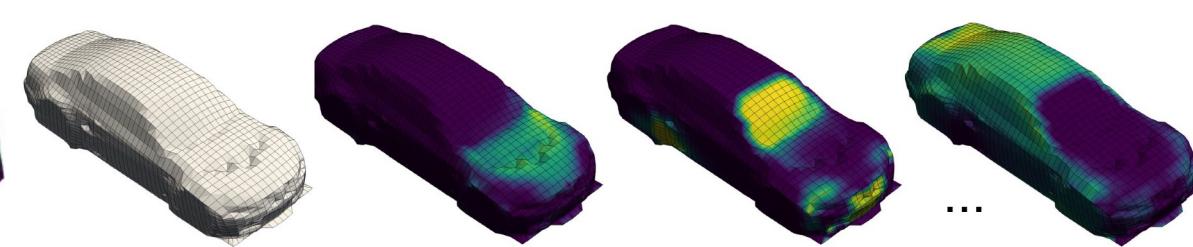
(b) Slices for Elasticity, 2D Point Cloud



(c) Slices for Airfoil, 2D Mesh



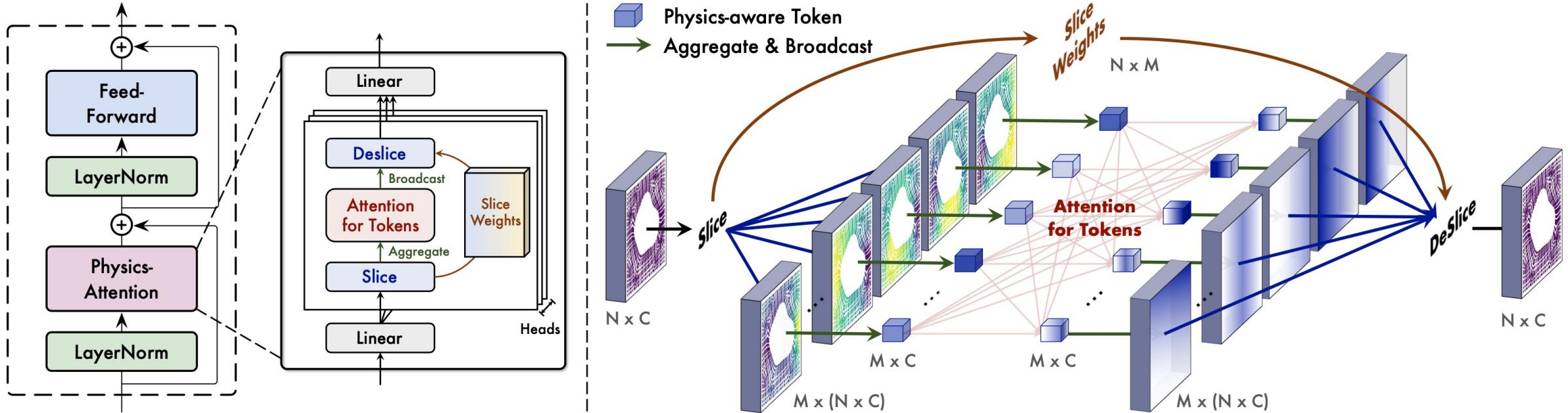
(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes



(e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

Mesh points under **similar physical states** will be ascribed to the same **slice**
and then encoded into a physics-aware token.

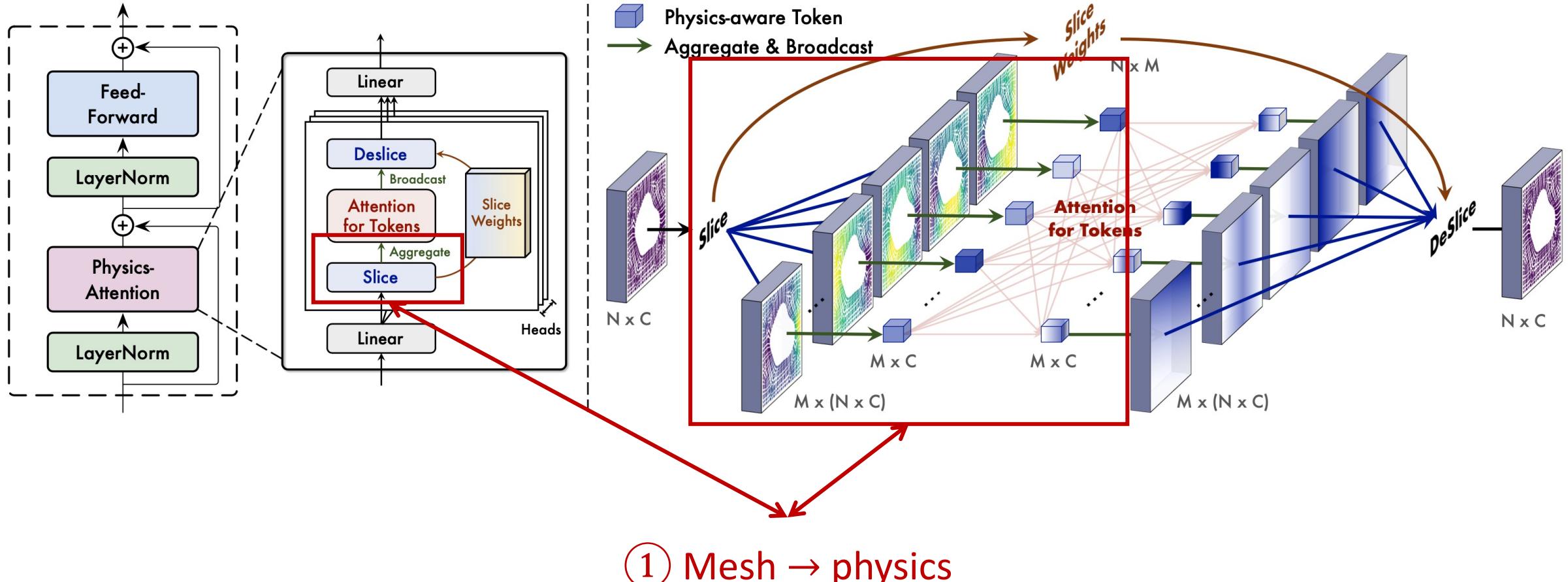
Overview of Transolver



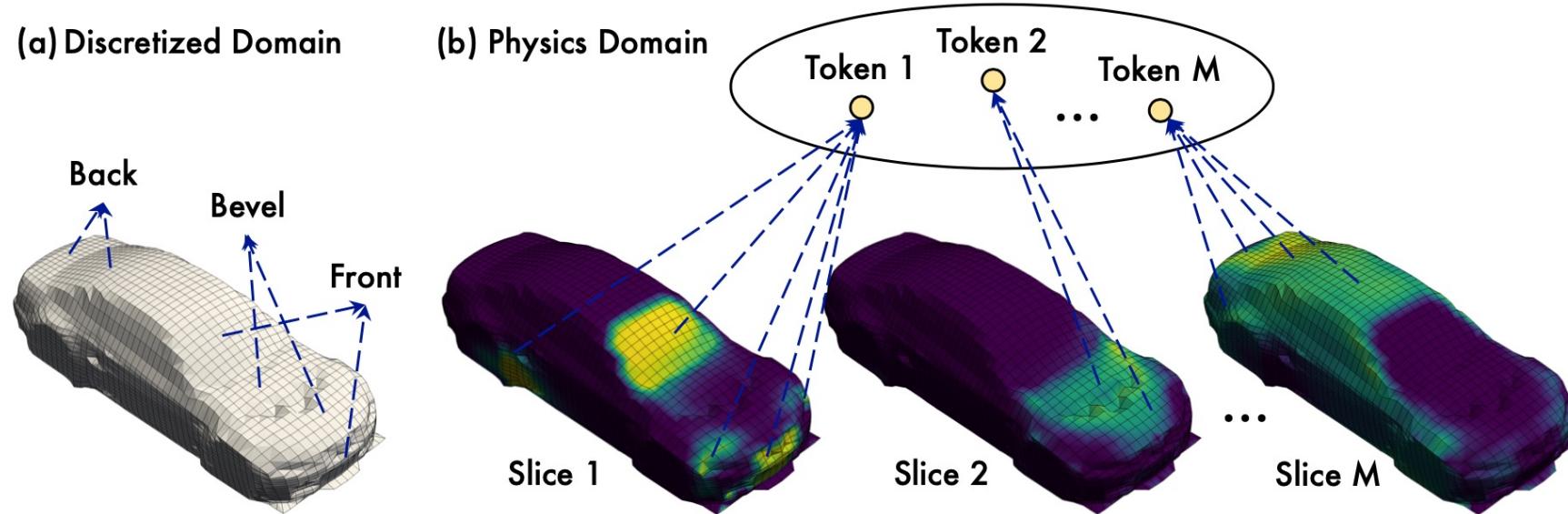
Transolver applies attention to learned physical states (**Physics-Attention**)

- ① Mesh \rightarrow physics
- ② Attention (Integral)
- ③ Physics \rightarrow Mesh

Step 1: Mesh → Physics



Learning Physics-aware Tokens



1. Assign each point to slices with weights learned from features

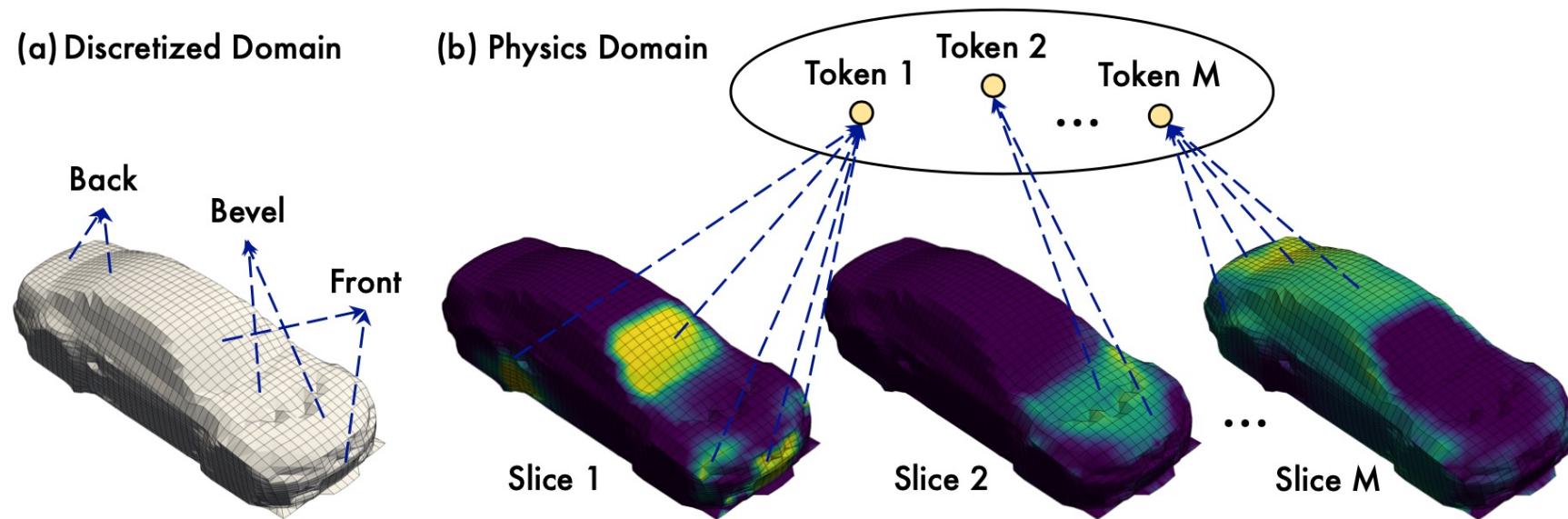
$$\{\mathbf{w}_i\}_{i=1}^N = \{\text{Softmax} \left(\text{Project} (\mathbf{x}_i) \right)\}_{i=1}^N$$

N Points to M Slices

$$\mathbf{s}_j = \{\mathbf{w}_{i,j} \mathbf{x}_i\}_{i=1}^N,$$

Softmax for low-entropy slices

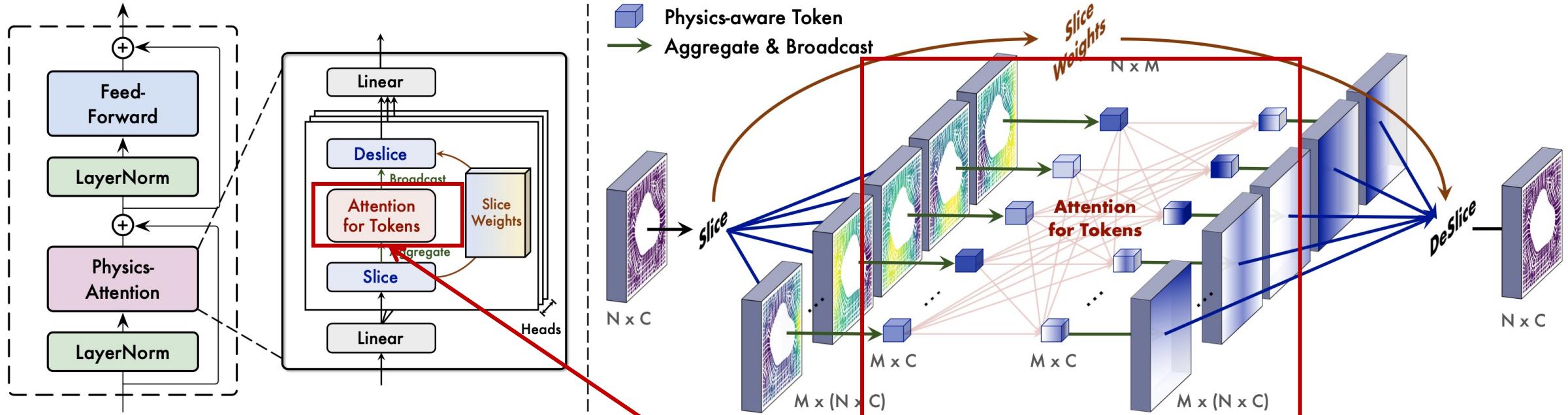
Learning Physics-aware Tokens



1. Assign each point to slices
2. Aggregate slices for physics-aware tokens

$$\mathbf{z}_j = \frac{\sum_{i=1}^N \mathbf{s}_{j,i}}{\sum_{i=1}^N \mathbf{w}_{i,j}} = \frac{\sum_{i=1}^N \mathbf{w}_{i,j} \mathbf{x}_i}{\sum_{i=1}^N \mathbf{w}_{i,j}}$$

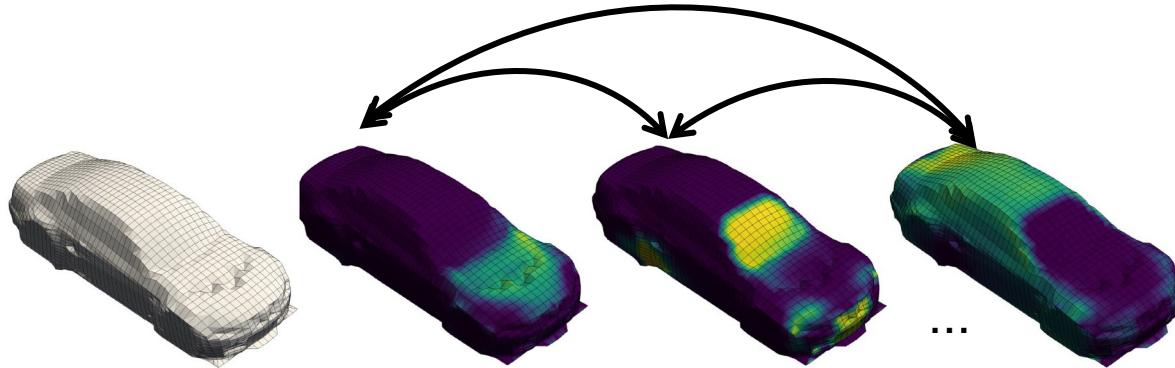
Step 2: Physics Interaction



② Attention among physics tokens

Approximate Integral to solve PDEs

Attention among physics tokens

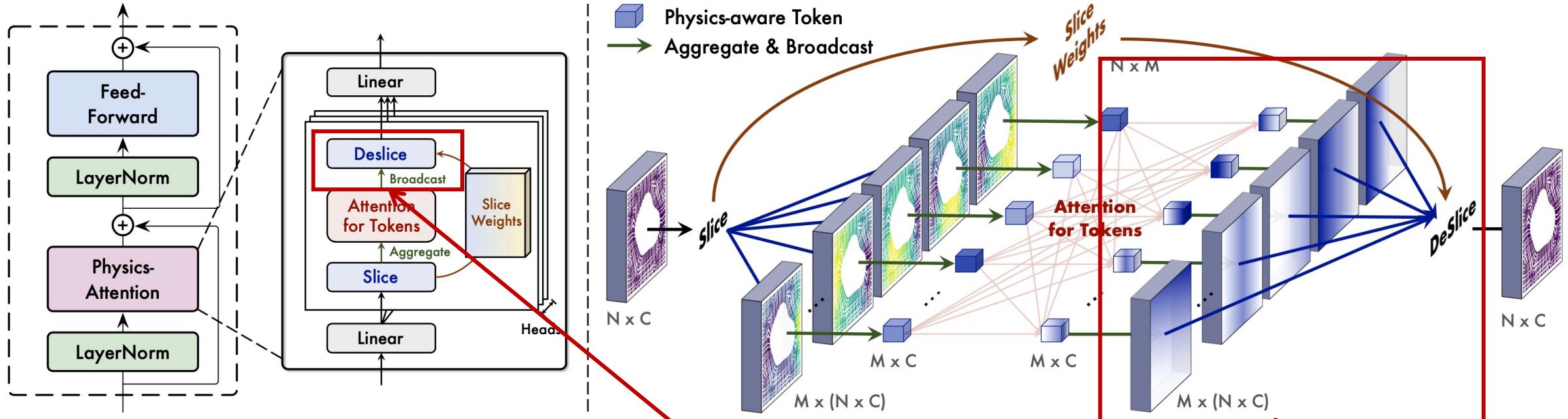


$$\mathbf{q}, \mathbf{k}, \mathbf{v} = \text{Linear}(\underline{\mathbf{z}}), \quad \mathbf{z}' = \text{Softmax} \left(\frac{\mathbf{q} \mathbf{k}^\top}{\sqrt{C}} \right) \mathbf{v}$$

Canonical attention among physics tokens

1. Complexity: $\mathcal{O}(N^2C) \rightarrow \mathcal{O}(M^2C)$
2. Capture interactions among physics states
3. Theorem: Attention as learnable integral operator

Step 3: Physics → Mesh



③ Physics → Mesh

Project physics information back to mesh

$$\mathbf{x}'_i = \sum_{j=1}^M \underline{\mathbf{w}_{i,j} \mathbf{z}'_j}$$

Slice weight

Theoretical Understanding of Transolver

1. Corollary of *Attention is a learnable integral*

Since attention mechanism is applied to tokens encoded from slices, **the step 2 (attention part of Transolver) is a learnable integral for the physics domain**

Is Physics-Attention still an input domain integral?

$$\mathcal{G}(\mathbf{u})(\mathbf{g}^*) = \int_{\Omega} \kappa(\mathbf{g}^*, \boldsymbol{\xi}) \mathbf{u}(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

Theoretical Understanding of Transolver

$$\mathcal{G}(\mathbf{u})(\mathbf{g}) = \int_{\Omega} \kappa(\mathbf{g}, \boldsymbol{\xi}) \mathbf{u}(\boldsymbol{\xi}) d\boldsymbol{\xi}$$

$$= \int_{\Omega_s} \kappa_{ms}(\mathbf{g}, \boldsymbol{\xi}_s) \mathbf{u}_s(\boldsymbol{\xi}_s) d\mathbf{g}^{-1}(\boldsymbol{\xi}_s)$$

$$= \int_{\Omega_s} \kappa_{ms}(\mathbf{g}, \boldsymbol{\xi}_s) \mathbf{u}_s(\boldsymbol{\xi}_s) |\det(\nabla_{\boldsymbol{\xi}_s} \mathbf{g}^{-1}(\boldsymbol{\xi}_s))| d\boldsymbol{\xi}_s$$

$$= \int_{\Omega_s} \left(\frac{\int_{\Omega_s} w_{\mathbf{g}, \boldsymbol{\xi}'_s} \kappa_{ss}(\boldsymbol{\xi}'_s, \boldsymbol{\xi}_s) d\boldsymbol{\xi}'_s}{\int_{\Omega_s} w_{\mathbf{g}, \boldsymbol{\xi}'_s} d\boldsymbol{\xi}'_s} \right) \mathbf{u}_s(\boldsymbol{\xi}_s) |\det(\nabla_{\boldsymbol{\xi}_s} \mathbf{g}^{-1}(\boldsymbol{\xi}_s))| d\boldsymbol{\xi}_s \quad (\kappa_{ms} \text{ is a linear combination of } \kappa_{ss} \text{ with weights } w_{*,*})$$

$$= \underbrace{\int_{\Omega_s} w_{\mathbf{g}, \boldsymbol{\xi}'_s} \int_{\Omega_s} \underbrace{\kappa_{ss}(\boldsymbol{\xi}'_s, \boldsymbol{\xi}_s)}_{\text{Attention among slice tokens}} \underbrace{\mathbf{u}_s(\boldsymbol{\xi}_s)}_{\text{Slice token}} |\det(\nabla_{\boldsymbol{\xi}_s} \mathbf{g}^{-1}(\boldsymbol{\xi}_s))| d\boldsymbol{\xi}_s d\boldsymbol{\xi}'_s}_{\text{DeSlice}} \quad (\text{Suppose that } \int_{\Omega_s} w_{\mathbf{g}, \boldsymbol{\xi}'_s} d\boldsymbol{\xi}'_s = 1)$$

$$\approx \underbrace{\sum_{j=1}^M \mathbf{w}_{i,j}}_{\text{Eq. (4)}} \underbrace{\sum_{t=1}^M \frac{\exp\left(\left(\mathbf{W}_q \mathbf{u}_s(\boldsymbol{\xi}_{s,j})\right) \left(\mathbf{W}_k \mathbf{u}_s(\boldsymbol{\xi}_{s,t})\right)^\top / \tau\right)}{\sum_{p=1}^M \exp\left(\left(\mathbf{W}_q \mathbf{u}_s(\boldsymbol{\xi}_{s,j})\right) \left(\mathbf{W}_k \mathbf{u}_s(\boldsymbol{\xi}_{s,p})\right)^\top / \tau\right)}}_{\text{Eq. (3)}} \mathbf{W}_v \left(\underbrace{\frac{\sum_{p=1}^N \mathbf{w}_{p,t} \mathbf{u}(\mathbf{g}_p)}{\sum_{p=1}^N \mathbf{w}_{p,t}}}_{\text{Eq. (2)}} \right) \quad \text{All the designs can be directly derived.}$$

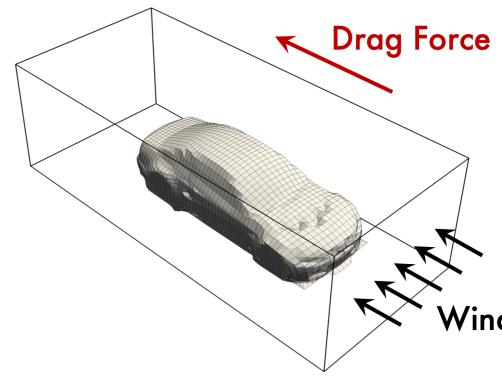
$$= \sum_{j=1}^M \mathbf{w}_{i,j} \sum_{t=1}^M \frac{\exp(\mathbf{q}_j \mathbf{k}_t^\top / \tau)}{\sum_{p=1}^M \exp(\mathbf{q}_j \mathbf{k}_p^\top / \tau)} \mathbf{v}_t,$$

$(\kappa_{ms}(\cdot, \cdot) : \Omega \times \Omega_s \rightarrow \mathbb{R}^{C \times C} \text{ is a kernel function})$

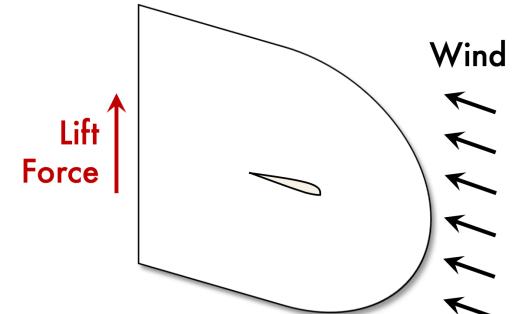
(Lemma A.1)

Experiments

GEOMETRY	BENCHMARKS	#DIM	#MESH
POINT CLOUD	ELASTICITY	2D	972
STRUCTURED MESH	PLASTICITY	2D+TIME	3,131
	AIRFOIL	2D	11,271
	PIPE	2D	16,641
REGULAR GRID	NAVIER–STOKES	2D+TIME	4,096
	DARCY	2D	7,225
UNSTRUCTURED MESH	SHAPE-NET CAR	3D	32,186
	AIRFRANS	2D	32,000



(a) Shape-Net Car



(b) AirfRANS

Six standard benchmarks, two practical design tasks

More than 20 baselines

Standard PDE-Solving Benchmarks

Model	Point Cloud		Structured Mesh			Regular Grid	
	Elasticity	Plasticity	Airfoil	Pipe	Navier-Stokes	Darcy	
FNO (Li et al., 2021)	/	/	/	/	0.1556	0.0108	
WMT (Gupta et al., 2021)	0.0359	0.0076	0.0075	0.0077	0.1541	0.0082	
U-FNO (Wen et al., 2022)	0.0239	0.0039	0.0269	0.0056	0.2231	0.0183	
GEO-FNO (Li et al., 2022)	0.0229	0.0074	0.0138	0.0067	0.1556	0.0108	
U-NO (Rahman et al., 2023)	0.0258	0.0034	0.0078	0.0100	0.1713	0.0113	
F-FNO (Tran et al., 2023)	0.0263	0.0047	0.0078	0.0070	0.2322	0.0077	
LSM (Wu et al., 2023)	0.0218	0.0025	<u>0.0059</u>	0.0050	0.1535	<u>0.0065</u>	
GALERKIN (Cao, 2021)	0.0240	0.0120	0.0118	0.0098	0.1401	0.0084	
HT-NET (Liu et al., 2022)	/	0.0333	0.0065	0.0059	0.1847	0.0079	
OFORMER (Li et al., 2023c)	0.0183	<u>0.0017</u>	0.0183	0.0168	0.1705	0.0124	
GNOT (Hao et al., 2023)	<u>0.0086</u>	0.0336	0.0076	<u>0.0047</u>	0.1380	0.0105	
FACTFORMER (Li et al., 2023d)	/	0.0312	0.0071	0.0060	0.1214	0.0109	
ONO (Xiao et al., 2024)	0.0118	0.0048	0.0061	0.0052	<u>0.1195</u>	0.0076	
TRANSOLVER (Ours)	0.0064	0.0012	0.0053	0.0033	0.0900	0.0057	
RELATIVE PROMOTION	25.6%	29.4%	10.2%	29.7%	24.7%	12.3%	

Transolver achieves 22% error reduction over the second-best model

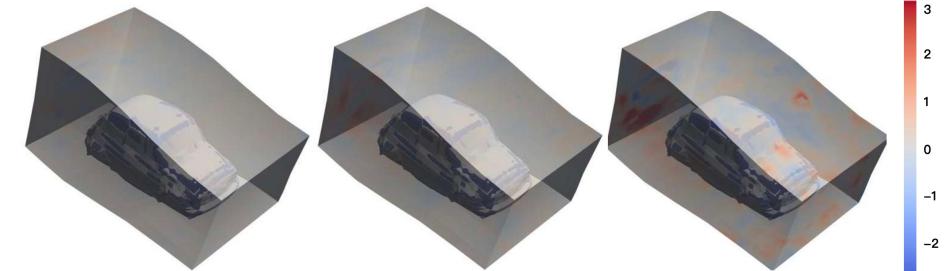
Car and Airfoil Design

模型 *	Shape-Net Car				AirfRANS			
	Volume ↓	Surf ↓	$C_D \downarrow$	$\rho_D \uparrow$	Volume ↓	Surf ↓	$C_L \downarrow$	$\rho_L \uparrow$
Simple MLP	0.0512	0.1304	0.0307	0.9496	0.0081	0.0200	0.2108	0.9932
GraphSAGE ^[197]	0.0461	0.1050	0.0270	0.9695	0.0087	0.0184	<u>0.1476</u>	<u>0.9964</u>
PointNet ^[196]	0.0494	0.1104	0.0298	0.9583	0.0253	0.0996	0.1973	0.9919
Graph U-Net ^[206]	0.0471	0.1102	0.0226	0.9725	0.0076	0.0144	0.1677	0.9949
MeshGraphNet ^[198]	0.0354	0.0781	0.0168	0.9840	0.0214	0.0387	0.2252	0.9945
GNO ^[80]	0.0383	0.0815	0.0172	0.9834	0.0269	0.0405	0.2016	0.9938
Galerkin ^[203]	0.0339	0.0878	0.0179	0.9764	0.0074	0.0159	0.2336	0.9951
geo-FNO ^[192]	0.1670	0.2378	0.0664	0.8280	0.0361	0.0301	0.6161	0.9257
GNOT ^[85]	0.0329	0.0798	0.0178	0.9833	<u>0.0049</u>	<u>0.0152</u>	0.1992	0.9942
GINO ^[199]	0.0386	0.0810	0.0184	0.9826	0.0297	0.0482	0.1821	0.9958
3D-GeoCA ^[193]	<u>0.0319</u>	<u>0.0779</u>	<u>0.0159</u>	<u>0.9842</u>	/	/	/	/
Transolver	0.0207	0.0745	0.0103	0.9935	0.0037	0.0142	0.1030	0.9978

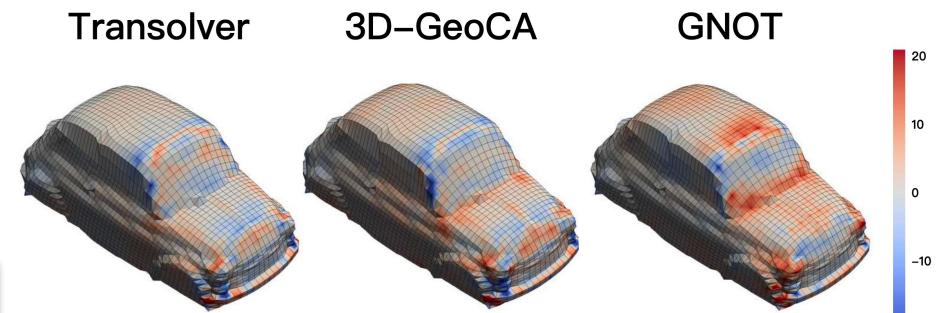
Model capability in “ranking” designs

$$C = \frac{2}{v^2 A} \left(\int_{\partial\Omega} p(\xi) (\hat{n}(\xi) \cdot \hat{i}(\xi)) d\xi + \int_{\partial\Omega} \tau(\xi) \cdot \hat{i}(\xi) d\xi \right)$$

Transolver 3D-GeoCA GNOT



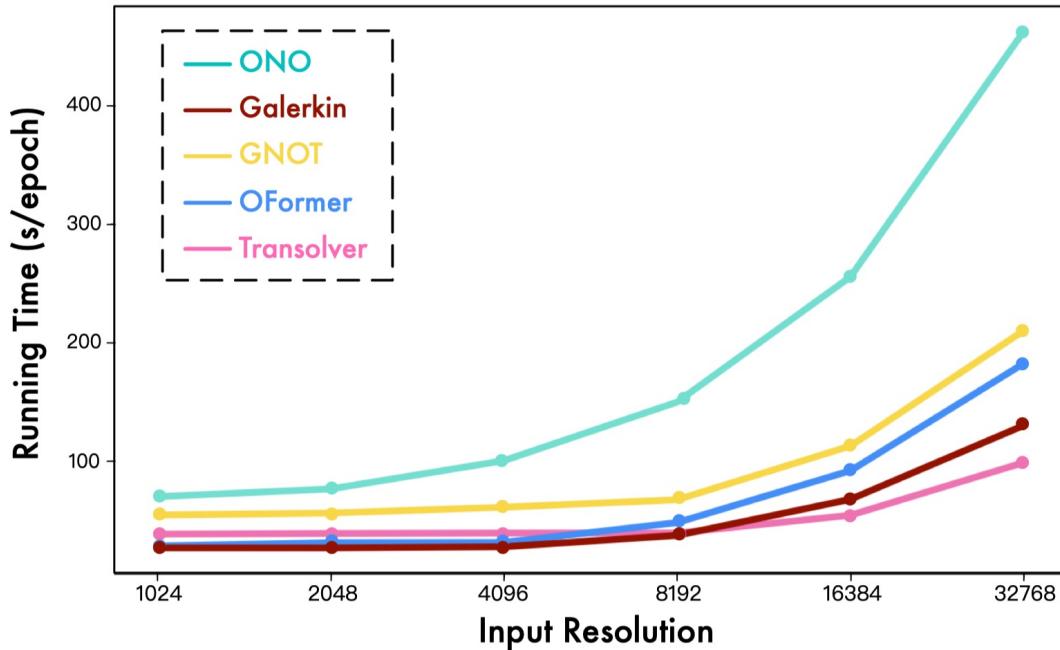
Surrounding Velocity Error Map



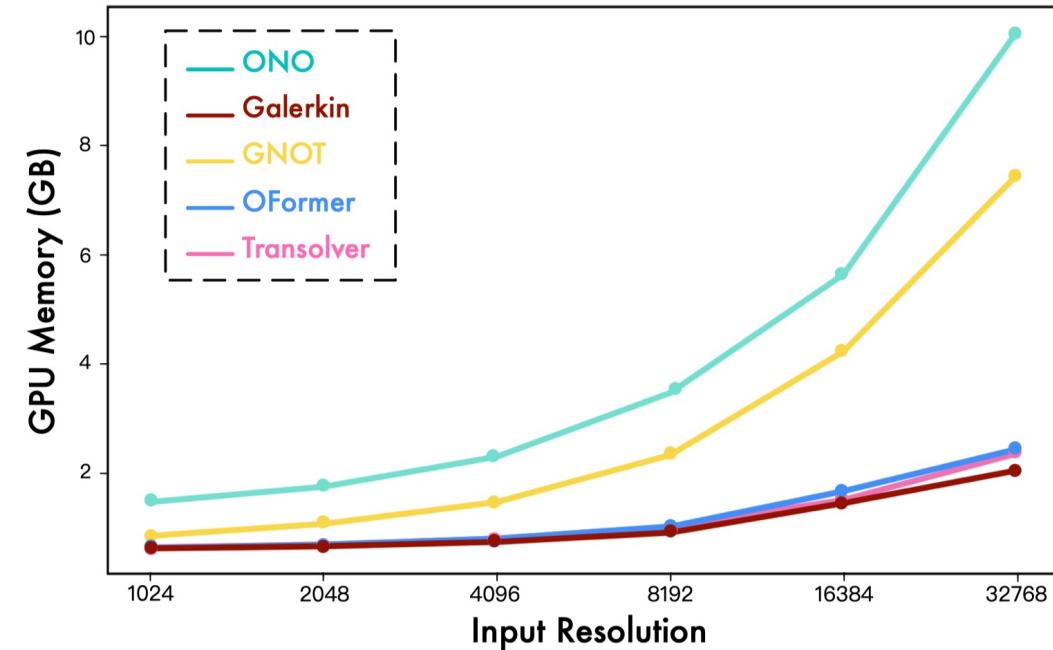
Surface Pressure Error Map

Efficiency

Running Time



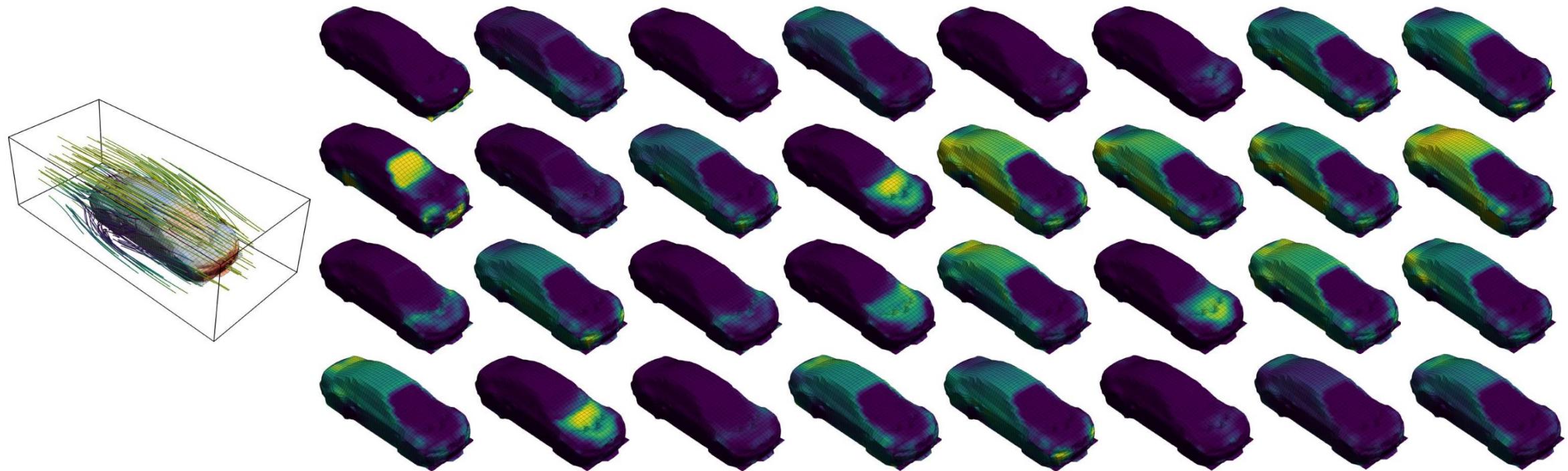
GPU Memory



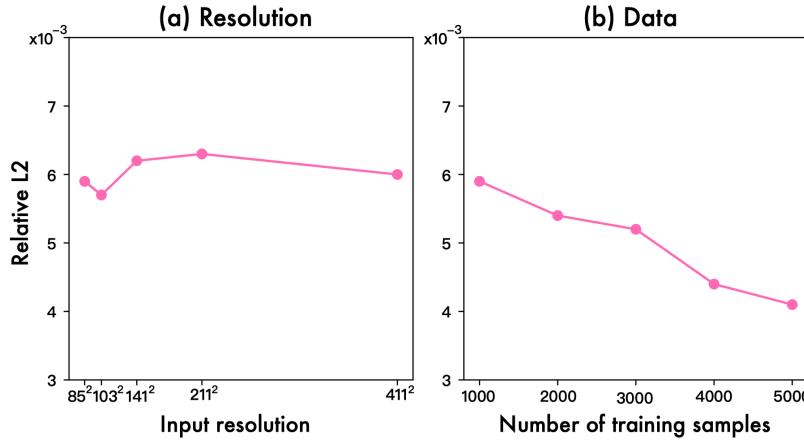
Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.

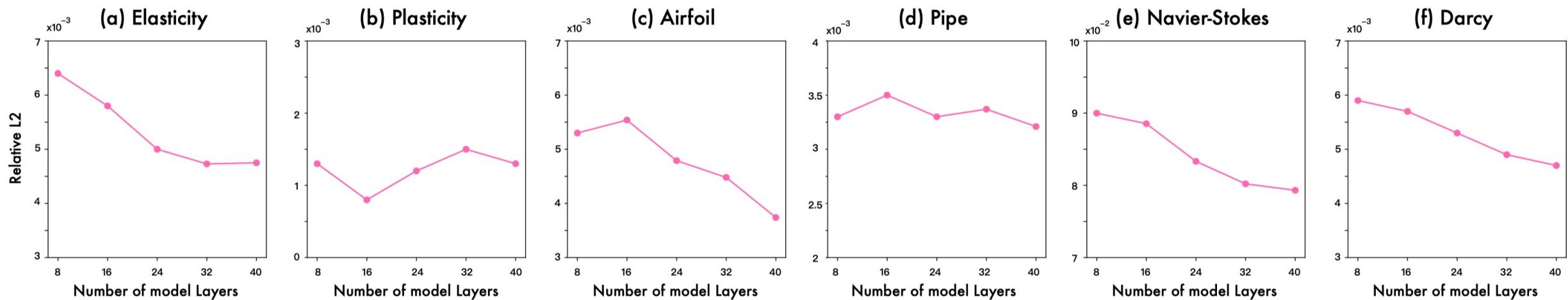
Physical States Visualization



Pursuing PDE Foundation Models: Scalability

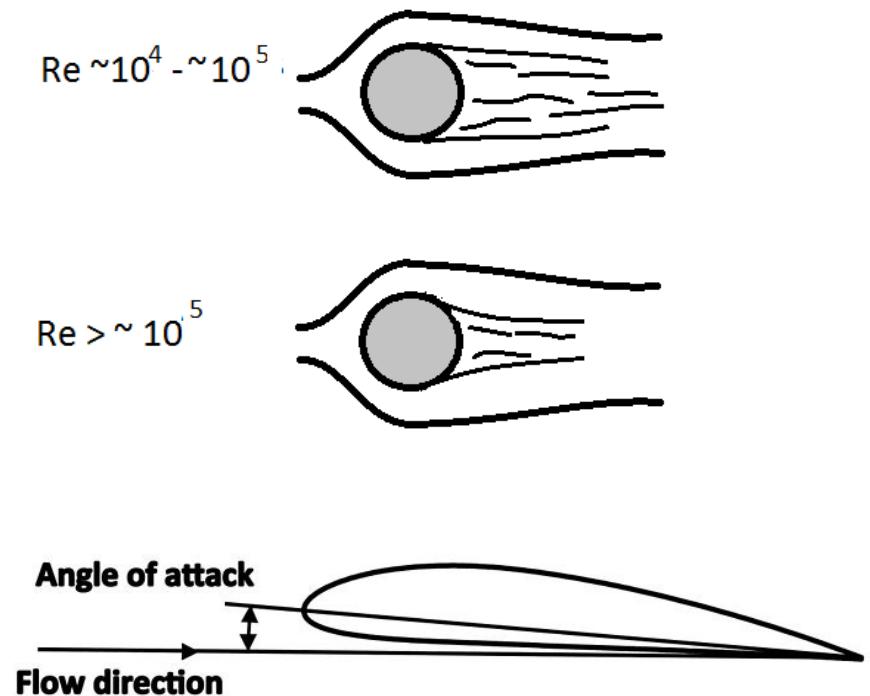


1. **Resolution:** Consistent performance at varied scales
2. **Data:** Benefiting from larger training data
3. **Parameter:** Benefiting from more parameters



Pursuing PDE Foundation Models: Generalization

MODELS	OOD REYNOLDS		OOD ANGLES	
	$C_L \downarrow$	$\rho_L \uparrow$	$C_L \downarrow$	$\rho_L \uparrow$
SIMPLE MLP	0.6205	0.9578	0.4128	0.9572
GRAPH SAGE (2017)	0.4333	0.9707	0.2538	0.9894
POINTNET (2017)	0.3836	0.9806	0.4425	0.9784
GRAPH U-NET (2019)	0.4664	0.9645	0.3756	0.9816
MESHGRAPHNET (2021)	1.7718	0.7631	0.6525	0.8927
GNO (2020A)	0.4408	0.9878	0.3038	0.9884
GALERKIN (2021)	0.4615	0.9826	0.3814	0.9821
GNOT (2023)	0.3268	0.9865	0.3497	0.9868
GINO (2023A)	0.4180	0.9645	0.2583	0.9923
TRANSOLVER (OURS)	0.2996	0.9896	0.1500	0.9950



Transolver still performs best (**Spearman's correlation ~ 99%**) in OOD settings

Open-Source Code

 Transolver Public

Edit Pins Watch 6 Fork 24 Starred 181

main 1 Branch 0 Tags Go to file Add file Code

wuhaixu2016 Merge pull request #17 from Dominik-RISC/fix-exp-elias-epochs 8d4abae · yesterday 28 Commits

Airfoil-Design-AirfRANS Update README.md 9 months ago

Car-Design-ShapeNetCar Update main.py 2 weeks ago

PDE-Solving-StandardBenchmark Fix: undefined 'epochs' variable in exp_elas.py last week

pic init code last year

.gitignore Initial commit last year

LICENSE Initial commit last year

Physics_Attention.py rename last year

README.md Update README.md 2 months ago

README MIT license

Transolver (ICML 2024 Spotlight)

News (2025.04) We have released [Neural-Solver-Library](#) as a simple and neat code base for PDE solving. It contains 17 well-reproduced neural solvers. Welcome to try this library and join the research in solving PDEs.

News (2025.02) We present an upgraded version of Transolver, named [Transolver++](#), which can handle million-scale geometries in one GPU with more accurate results.

News (2024.10) Transolver has been integrated into [NVIDIA modulus](#).

About

About code release of "Transolver: A Fast Transformer Solver for PDEs on General Geometries", ICML 2024 Spotlight.
<https://arxiv.org/abs/2402.02366>

Readme
MIT license
Activity
Custom properties
181 stars
6 watching
24 forks
Report repository

Releases

No releases published
[Create a new release](#)

Packages

No packages published
[Publish your first package](#)

Contributors 3

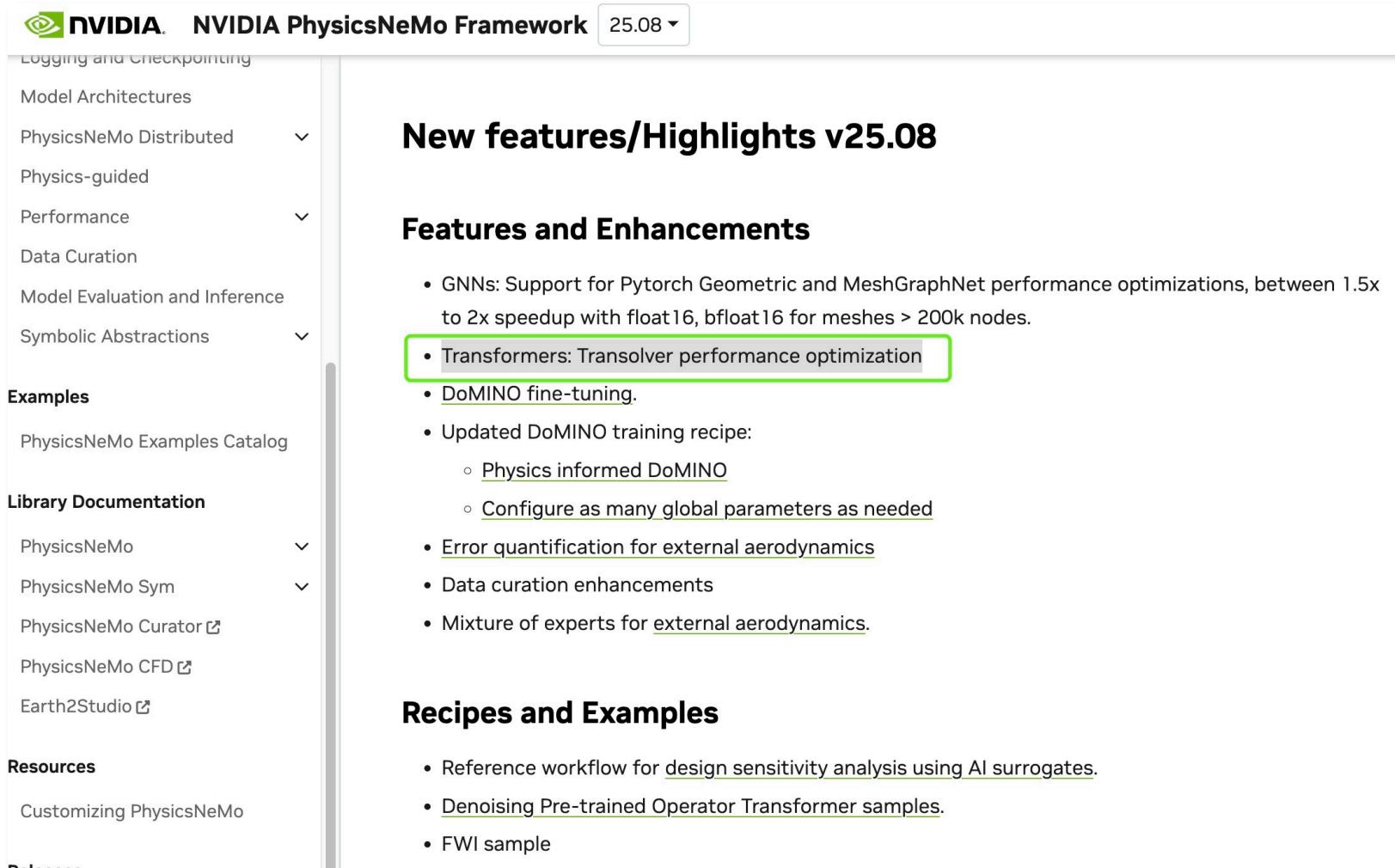
wuhaixu2016
wangguan1995 WG

Code Link: <https://github.com/thuml/Transolver>

Code for Transolver in Physicsnemo

Code for Transolver

NVIDIA PhysicsNeMo



NVIDIA PhysicsNeMo Framework 25.08

Logging and Checkpointing

Model Architectures

PhysicsNeMo Distributed

Physics-guided

Performance

Data Curation

Model Evaluation and Inference

Symbolic Abstractions

Examples

PhysicsNeMo Examples Catalog

Library Documentation

PhysicsNeMo

PhysicsNeMo Sym

PhysicsNeMo Curator

PhysicsNeMo CFD

Earth2Studio

Resources

Customizing PhysicsNeMo

Releases

New features/Highlights v25.08

Features and Enhancements

- GNNs: Support for Pytorch Geometric and MeshGraphNet performance optimizations, between 1.5x to 2x speedup with float16, bfloat16 for meshes > 200k nodes.
- **Transformers: Transolver performance optimization**
- DoMINO fine-tuning.
- Updated DoMINO training recipe:
 - Physics informed DoMINO
 - Configure as many global parameters as needed
- Error quantification for external aerodynamics
- Data curation enhancements
- Mixture of experts for external aerodynamics.

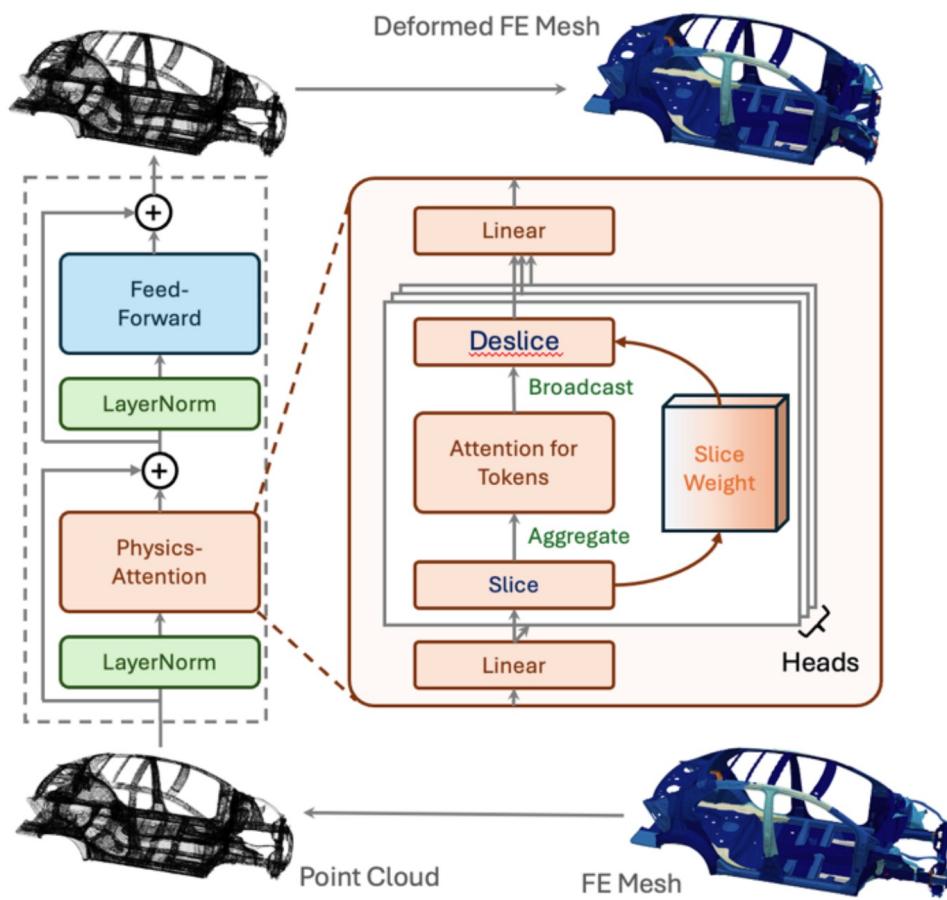
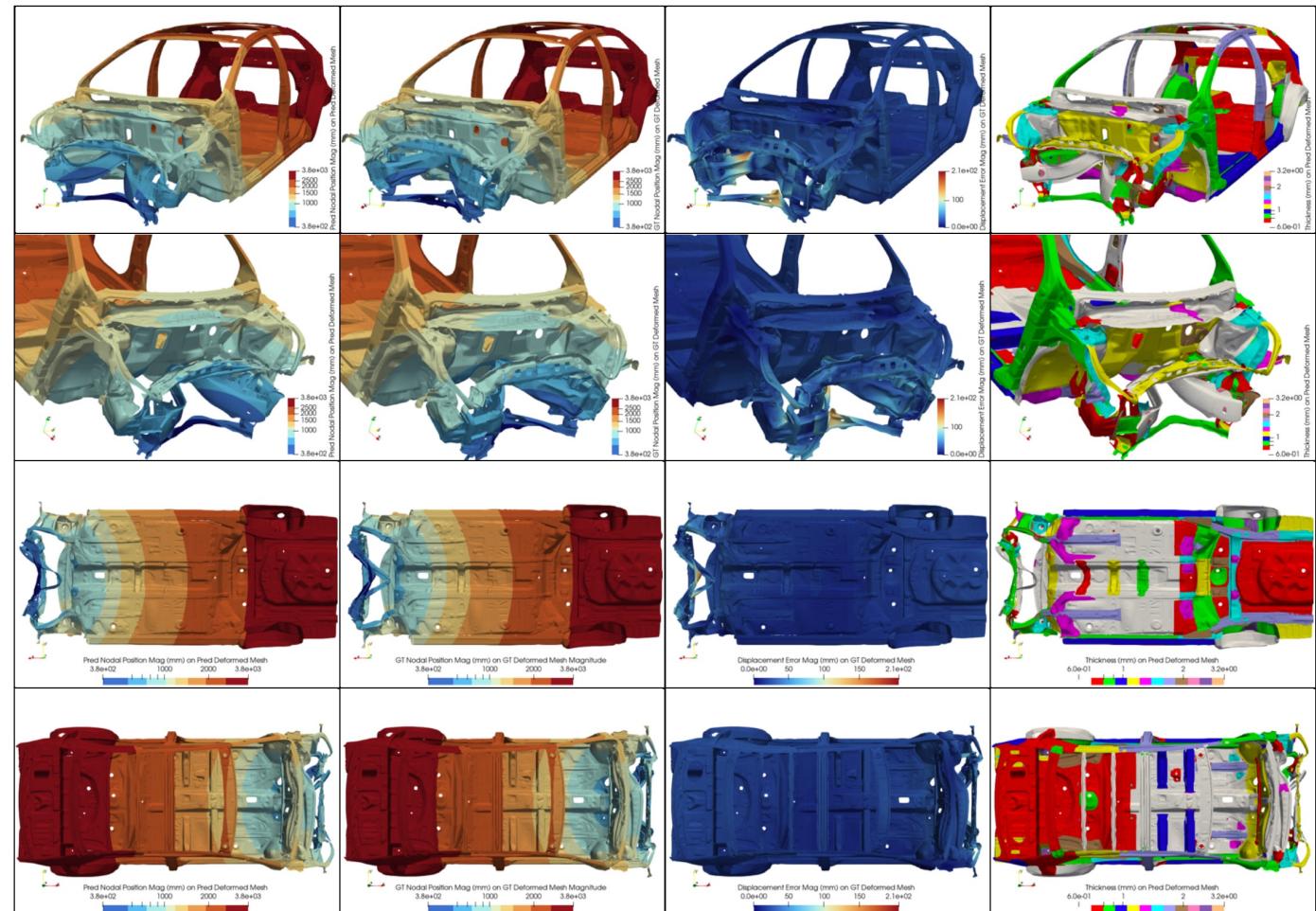
Recipes and Examples

- Reference workflow for design sensitivity analysis using AI surrogates.
- Denoising Pre-trained Operator Transformer samples.
- FWI sample

“The Transolver model is a **promising**, transformer-based model that **produces high-quality predictions** for CFD surrogate simulations.”

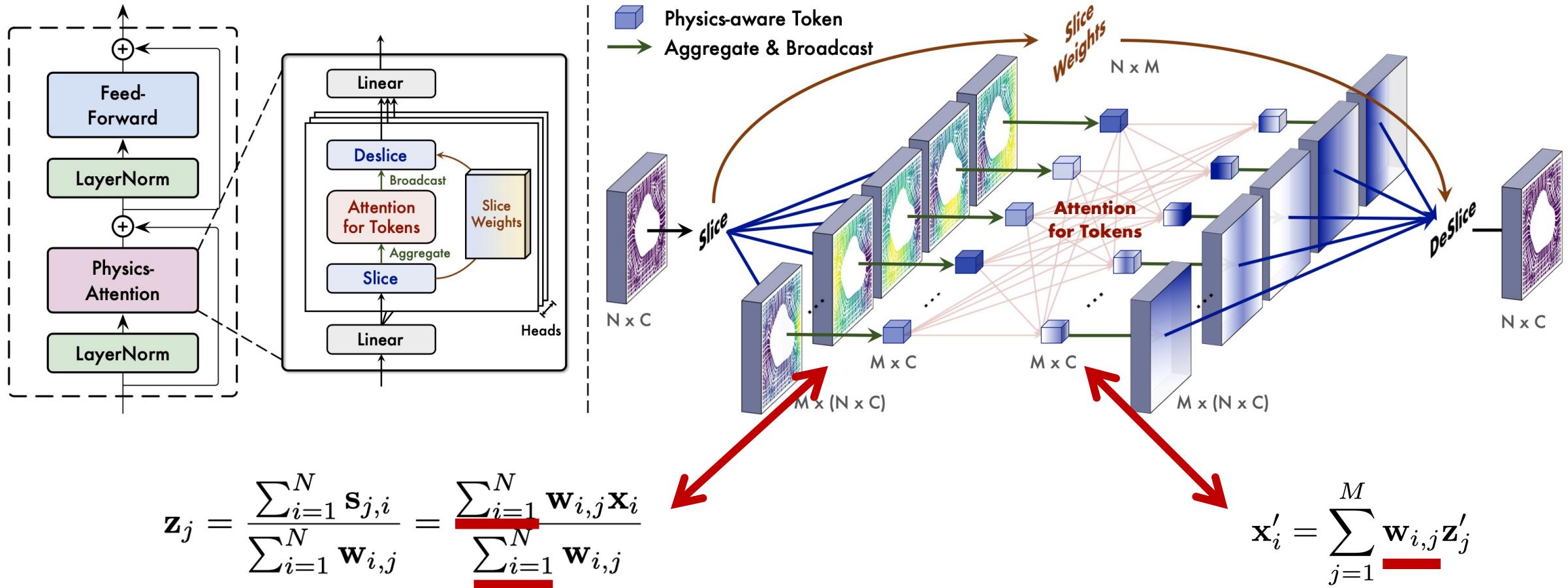
https://docs.nvidia.com/physicsnemo/25.08/physicsnemo/examples/cfd/external_aerodynamics/transolver/README.html

NVIDIA PhysicsNeMo



Nabian et al., Automotive Crash Dynamics Modeling Accelerated with Machine Learning, arXiv 2025

“Magic Design” in Transolver



Why adopt the global weighted sum?
Support Transolver++

Why reuse slice weights?
Support Transolver-3

Transolver++: An Accurate Neural Solver for PDEs on Million-Scale Geometries

Huakun Luo ^{*1} Haixu Wu ^{*1} Hang Zhou ¹ Lanxiang Xing ¹ Yichen Di ¹ Jianmin Wang ¹ Mingsheng Long ¹

Huakun Luo

Haixu Wu

Hang Zhou

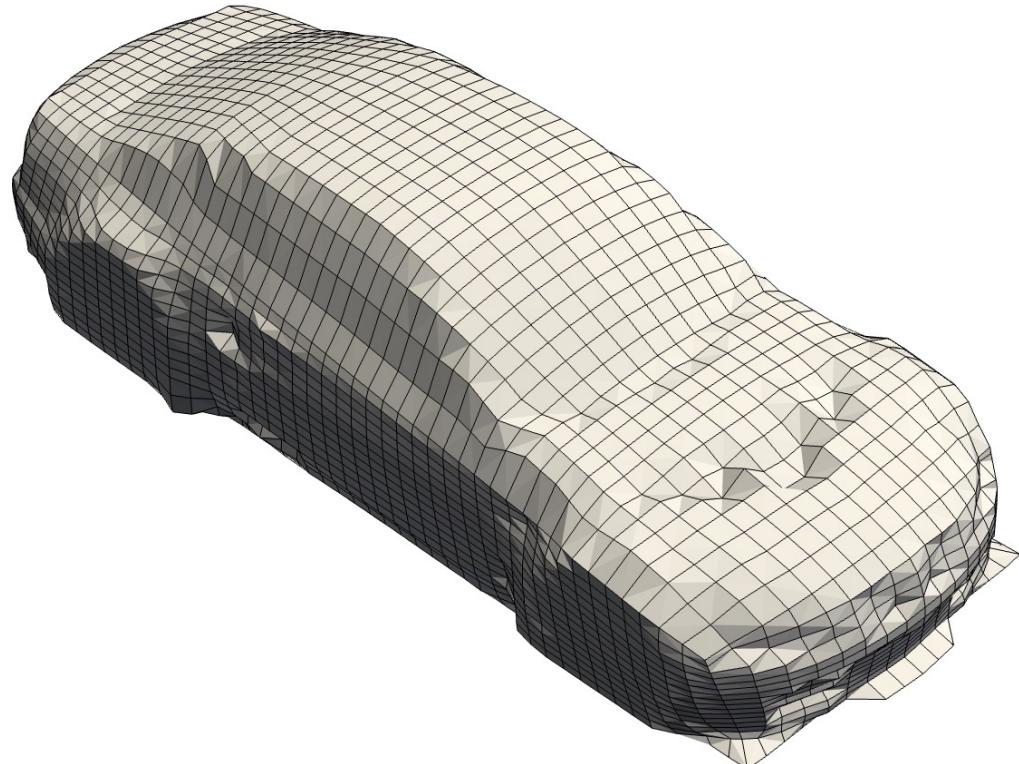
Lanxiang Xing

Yichen Di

Jianmin Wang

Mingsheng Long

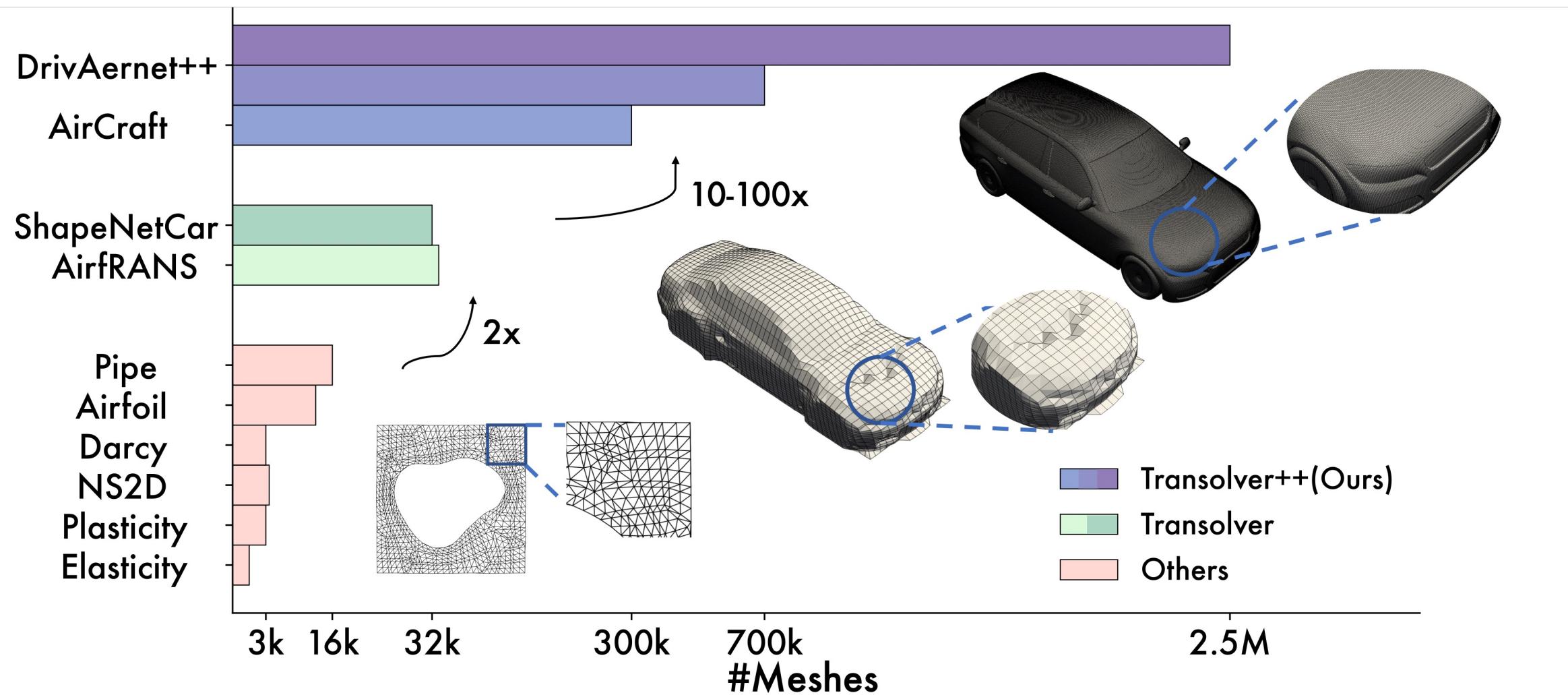
Extremely Large Geometries



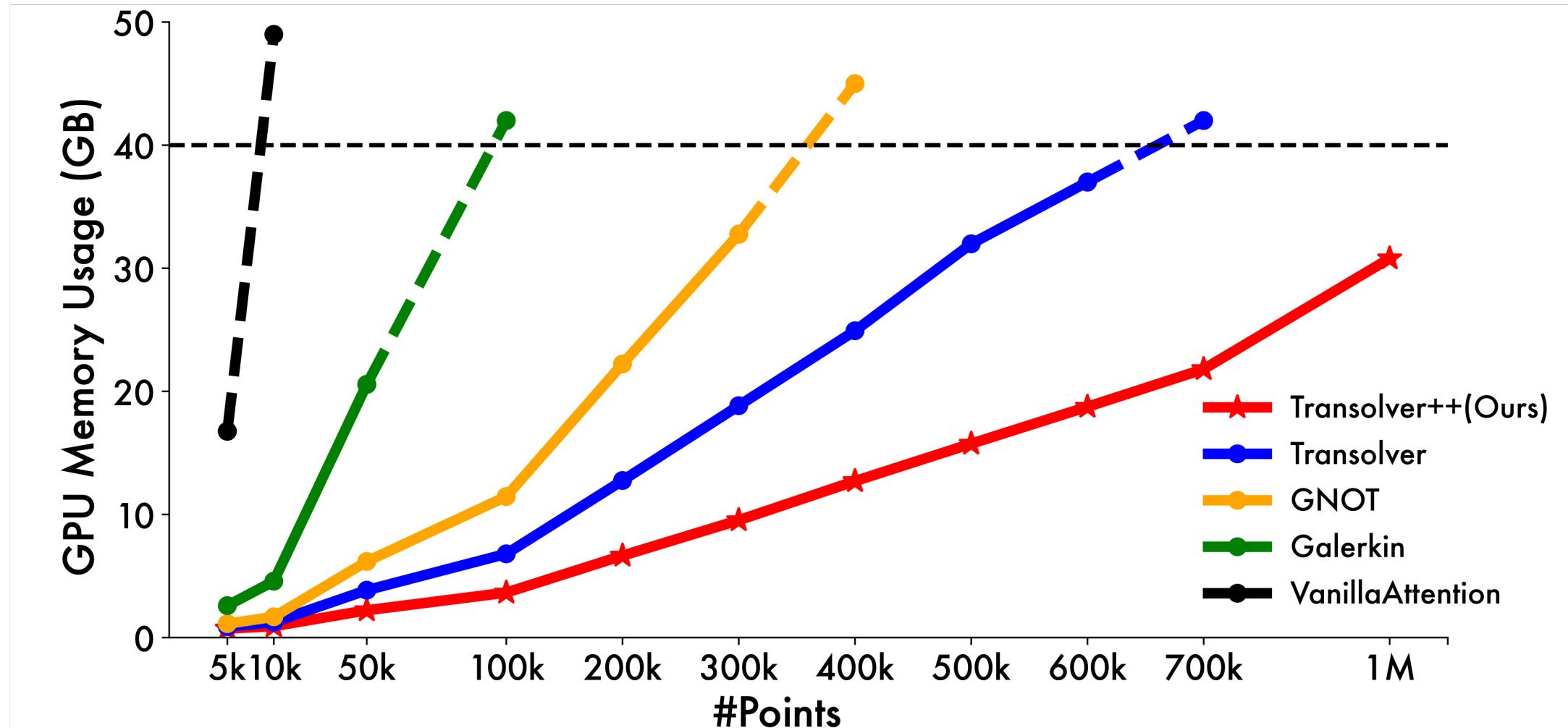
32k Mesh Points

2.5M Mesh Points

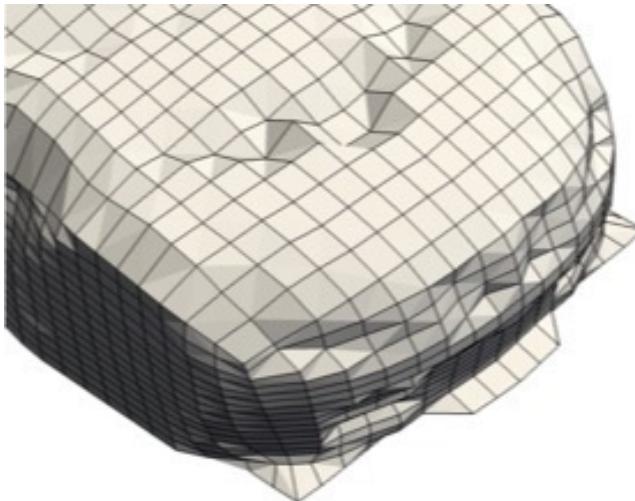
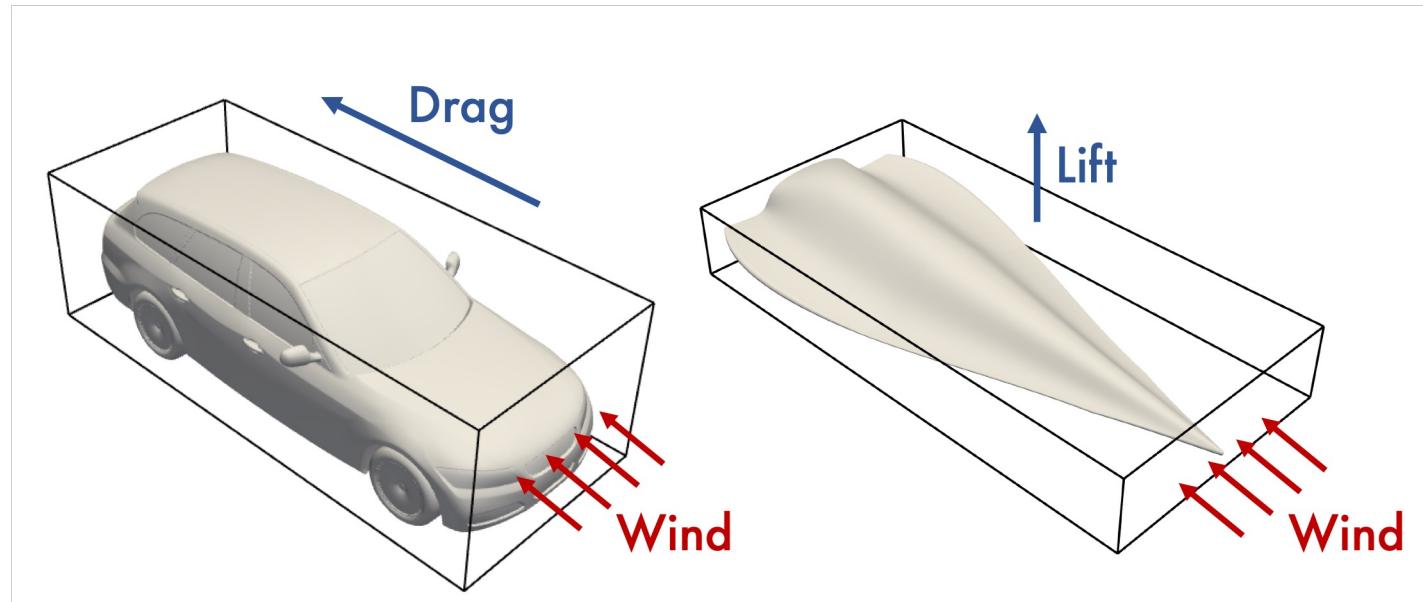
10-100x Larger than Previous Benchmarks



Transolver++: Enable PDE Solving in Million-Scale Geometries



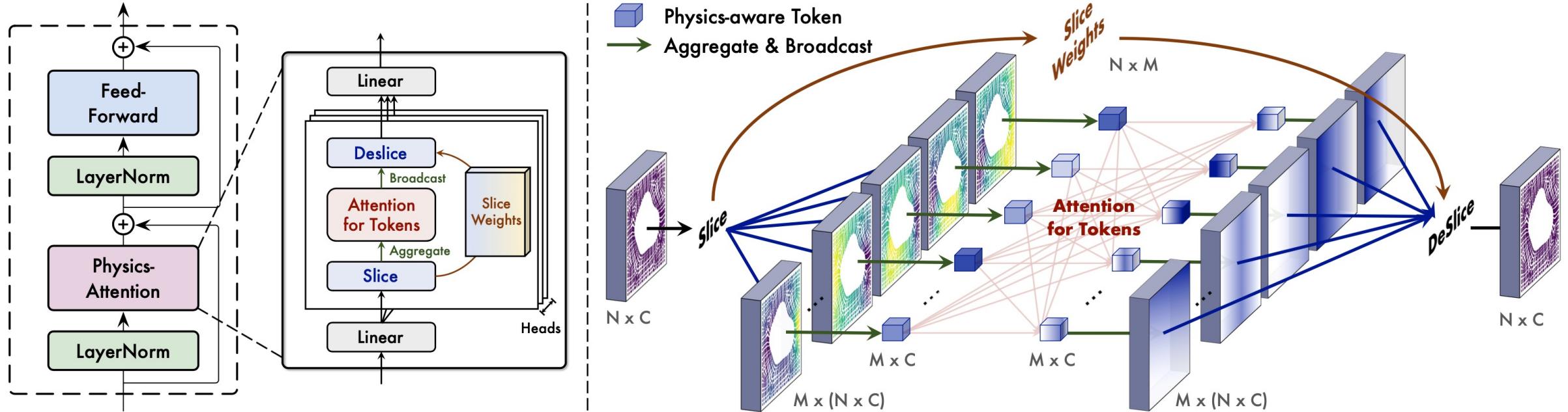
Difficulties on Applicability



Large Geometries In real-world applications

1. More complex geometrics with plenty of details
2. Deep models are expected to be Scalable
3. Models are expected to be more accurate

Revisiting Transolver

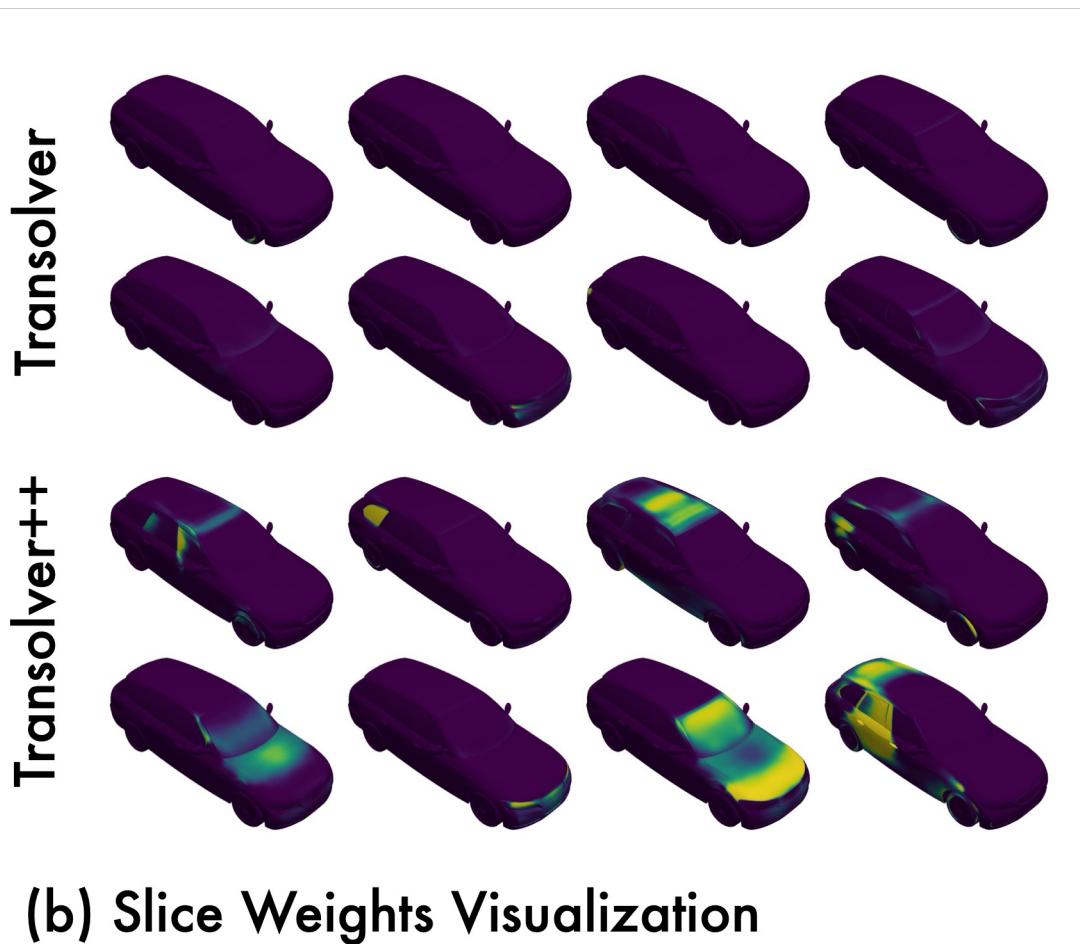


Transolver applies attention to learned physical states

- ① Mesh → physics
- ② Physics-Attention
- ③ Physics → Mesh

Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states

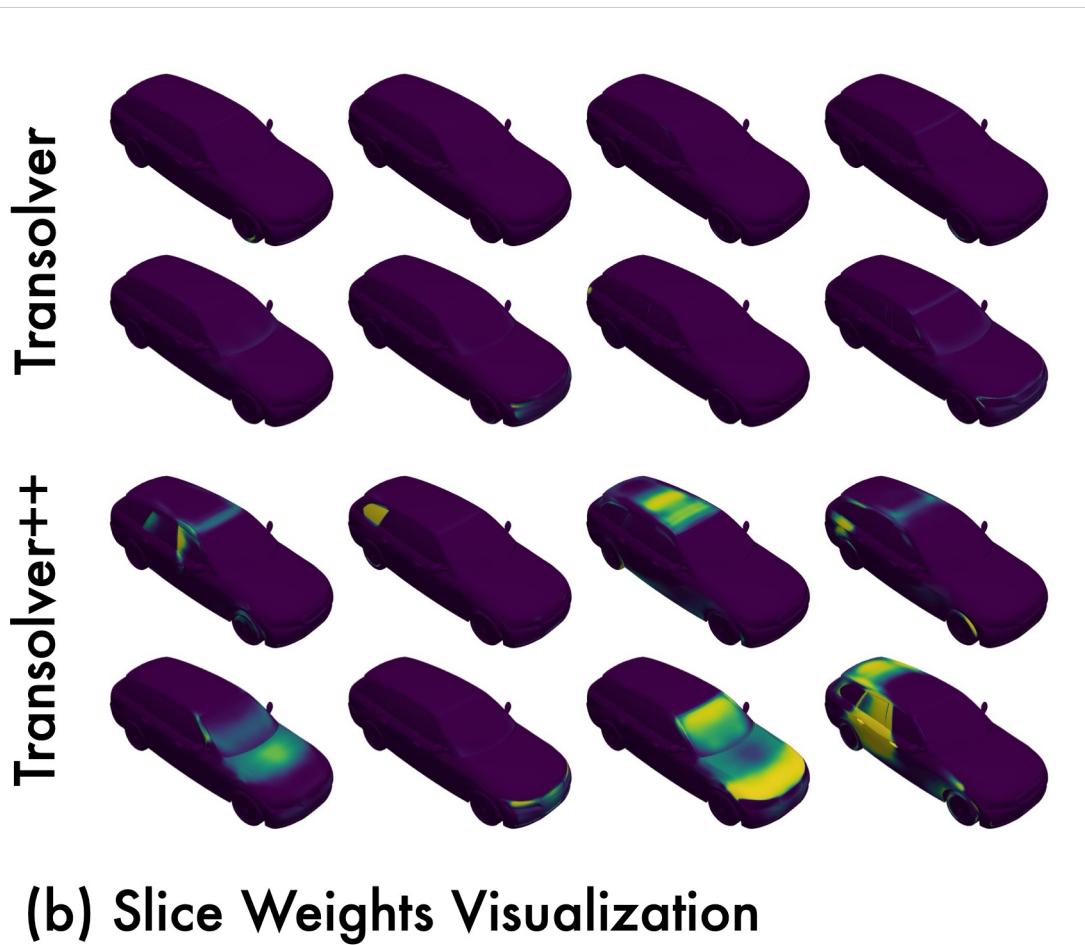


Degenerate in large-scale geometries

Improved physics learning

Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states



2. Efficiency Bottleneck

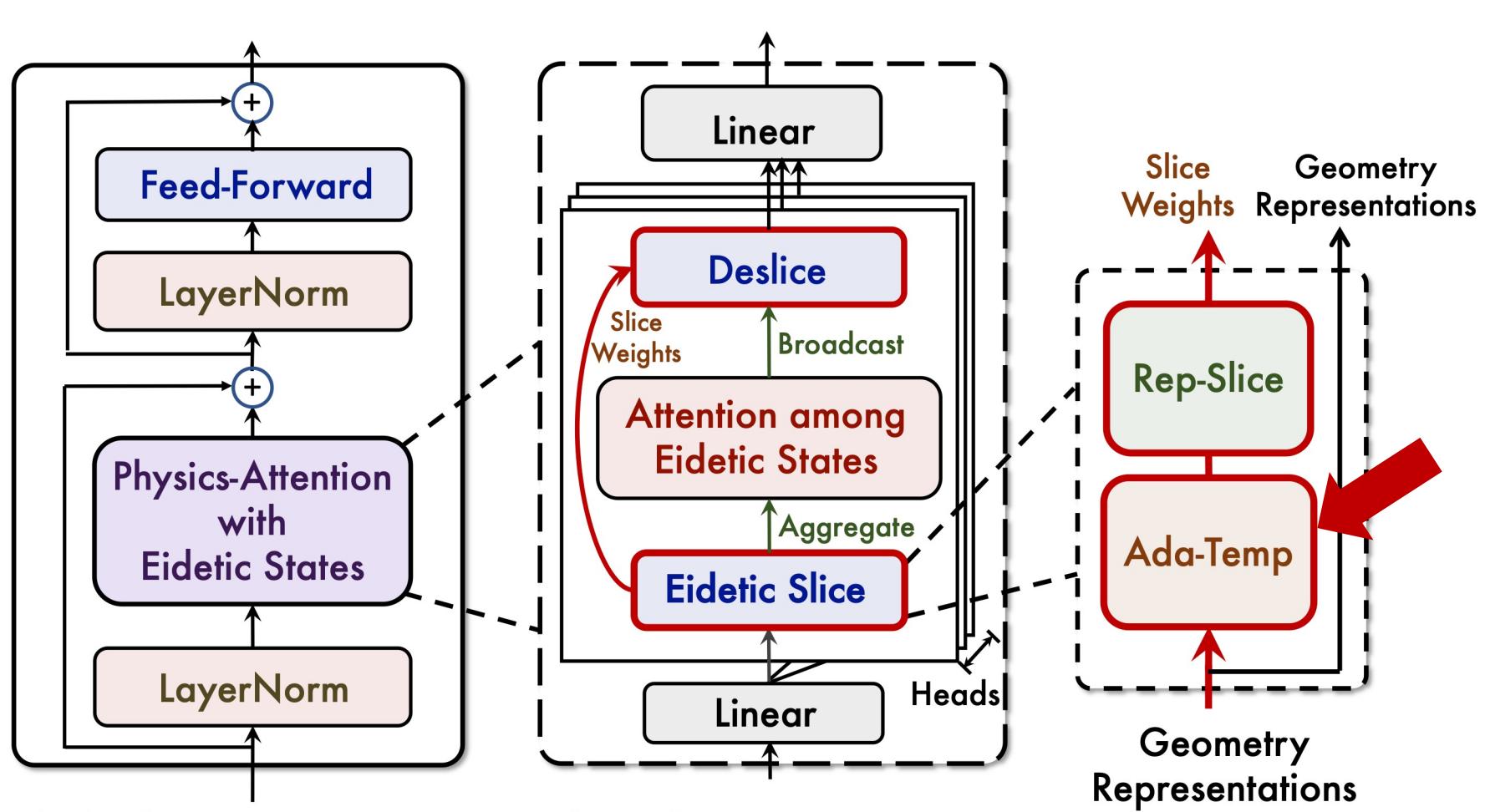
Slice weights: $\mathbf{w} = \text{Softmax}(\text{Linear}(\mathbf{x})/\tau_0)$

$$\text{Physical states: } \{\mathbf{s}_j\}_{j=1}^M = \left\{ \frac{\sum_{i=1}^N \mathbf{w}_{ij} \mathbf{x}_i}{\sum_{i=1}^N \mathbf{w}_{ij}} \right\}_{j=1}^M$$

- Even a single intermediate representation of one million mesh points will consume **2GB of GPU memory**
- Previous upper bound of geometry scale is 600k on a single GPU supported by Transolver

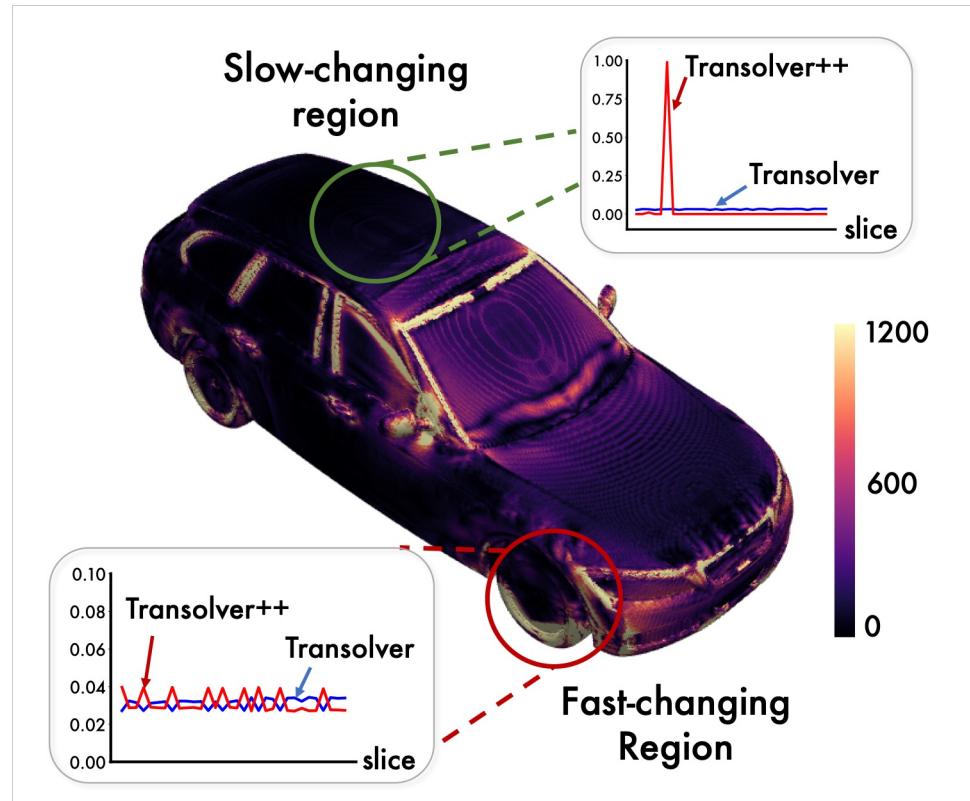
Upgrade 1: Physics-Attention with Eidetic States

Architectural Design



Upgrade 1: Physics-Attention with Eidetic States

Local Adaptive Mechanism



Slice reparameterization

$$\text{Ada-Temp: } \tau = \{\tau_i\}_{i=1}^N = \{\tau_0 + \text{Linear}(\mathbf{x}_i)\}_{i=1}^N,$$

- Utilize the local properties of each mesh point
- Learns the uncertainty of each points
- Adaptively change the temperature of each point

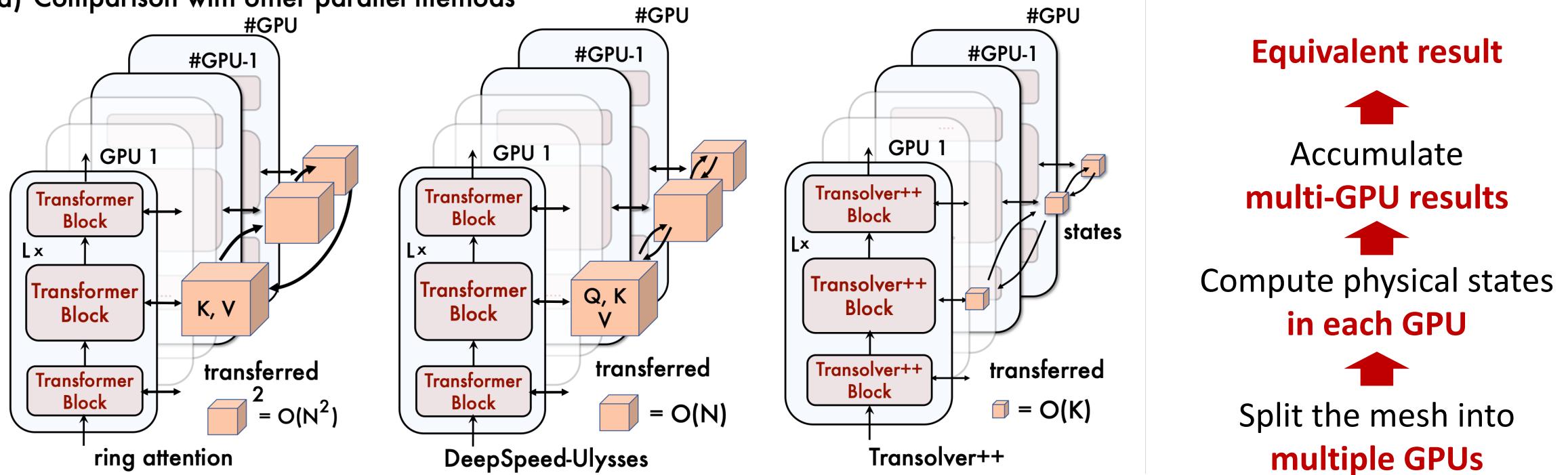
$$\text{Rep-Slice}(\mathbf{x}, \tau) = \text{Softmax} \left(\frac{\text{Linear}(\mathbf{x}) - \log(-\log \epsilon)}{\tau} \right), \quad (4)$$

Upgrade 2: Parallelism Framework

Transolver is under a natively parallel formulation.

Additivity of physical states:
$$s_j = \frac{\sum_{i=1}^{N_1} \mathbf{w}_{ij}^{(1)} \mathbf{x}_i^{(1)} \oplus \dots \oplus \sum_{i=1}^{N_{\text{gpu}}} \mathbf{w}_{ij}^{(\text{gpu})} \mathbf{x}_i^{(\text{gpu})}}{\sum_{i=1}^{N_1} \mathbf{w}_{ij}^{(1)} \oplus \dots \oplus \sum_{i=1}^{N_{\text{gpu}}} \mathbf{w}_{ij}^{(\text{gpu})}}$$

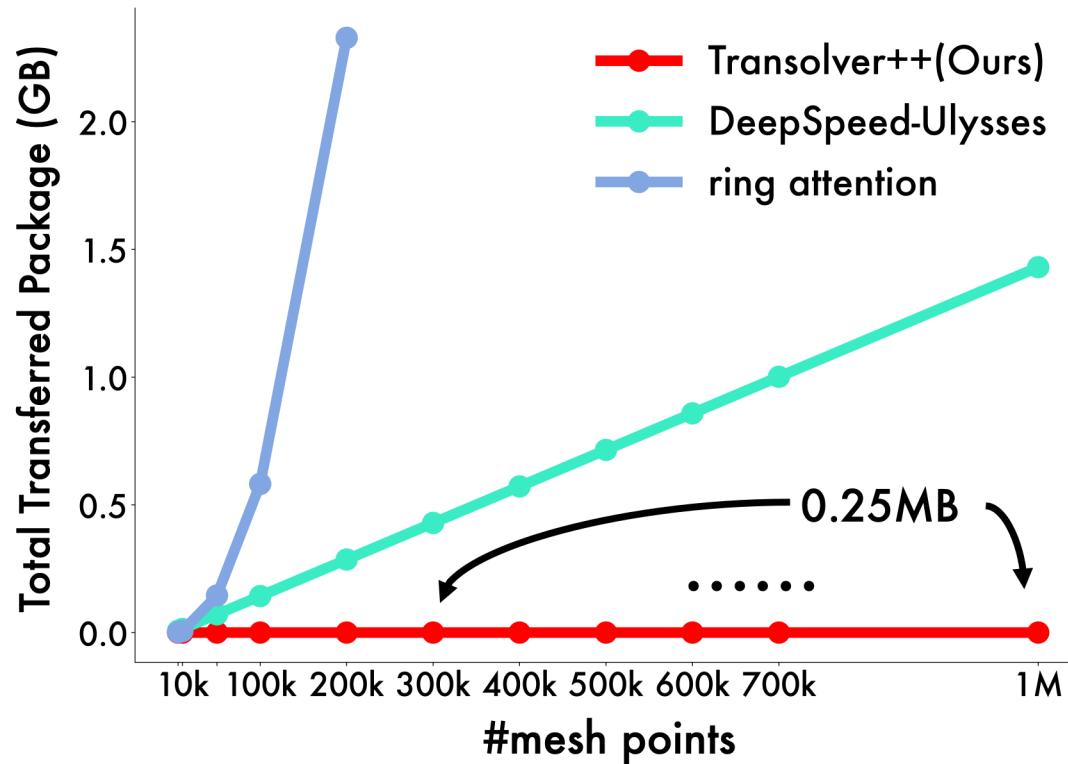
(a) Comparison with other parallel methods



Upgrade 2: Parallelism Framework

Overhead Analysis

(b) Scalability of Transferred Package



Further SpeedUp

Algorithm 1 Parallel Physics-Attention with Eidetic States

Input: Input features $\mathbf{x}^{(k)} \in \mathbb{R}^{N_k \times C}$ on the k -th GPU.

Output: Updated output features $\mathbf{x}'^{(k)} \in \mathbb{R}^{N_k \times C}$.

// drop \mathbf{f} to save 50% memory.

Compute $\mathbf{f}^{(k)}, \mathbf{x}^{(k)} \leftarrow \text{Project}(\mathbf{x}^{(k)})$

Compute $\tau^{(k)} \leftarrow \tau_0 + \text{Ada-Temp}(\mathbf{x}^{(k)})$

Compute weights $\mathbf{w}^{(k)} \leftarrow \text{Rep-Slice}(\mathbf{x}^{(k)}, \tau^{(k)})$

Compute weights norm $\mathbf{w}_{\text{norm}}^{(k)} \leftarrow \sum_{i=1}^{N_k} \mathbf{w}_i^{(k)}$

Reduce slice norm $\mathbf{w}_{\text{norm}} \leftarrow \text{AllReduce}(\mathbf{w}_{\text{norm}}^{(k)})$ $\mathcal{O}(M)$

Compute eidetic states $\mathbf{s}^{(k)} \leftarrow \frac{\mathbf{w}^{(k)\top} \mathbf{x}^{(k)} \mathbf{f}^{(k)}}{\mathbf{w}_{\text{norm}}}$

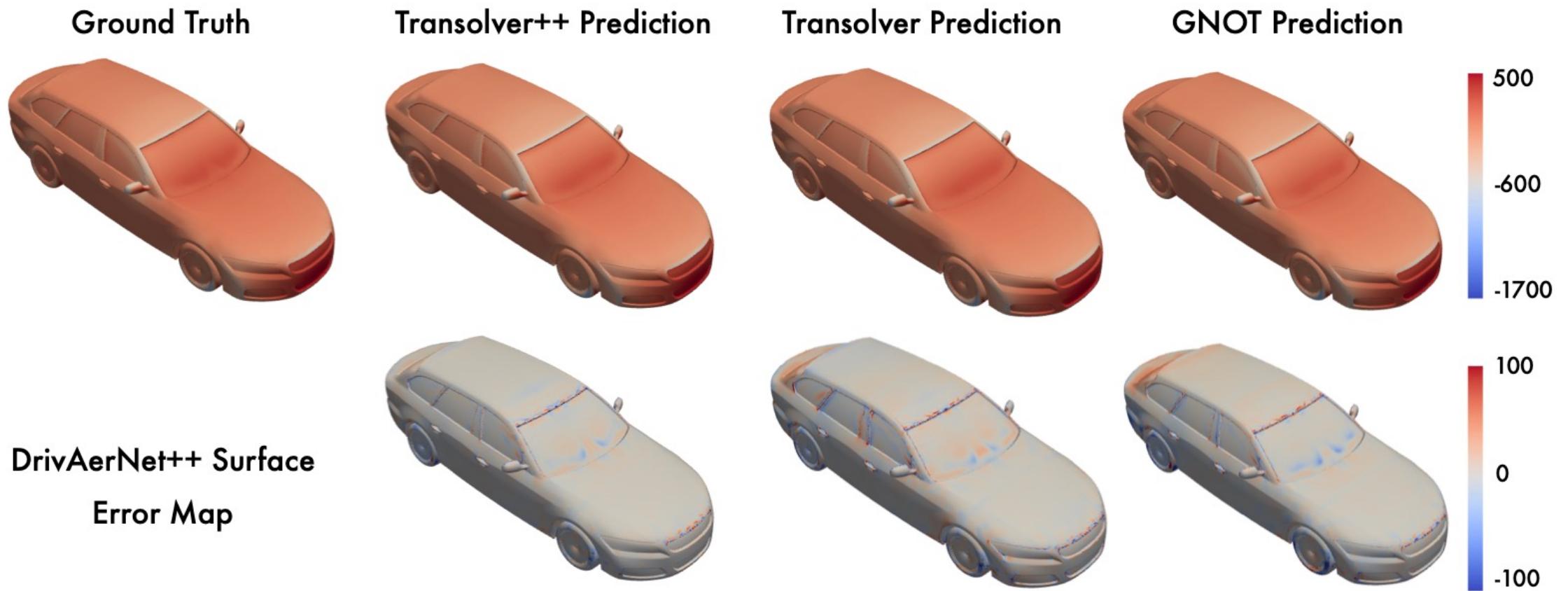
Reduce eidetic states $\mathbf{s} \leftarrow \text{AllReduce}(\mathbf{s}^{(k)})$ $\mathcal{O}(MC)$

Update eidetic states $\mathbf{s}' \leftarrow \text{Attention}(\mathbf{s})$

Deslice back to $\mathbf{x}'^{(k)} \leftarrow \text{Deslice}(\mathbf{s}', \mathbf{w}^{(k)})$

Return $\mathbf{x}'^{(k)}$

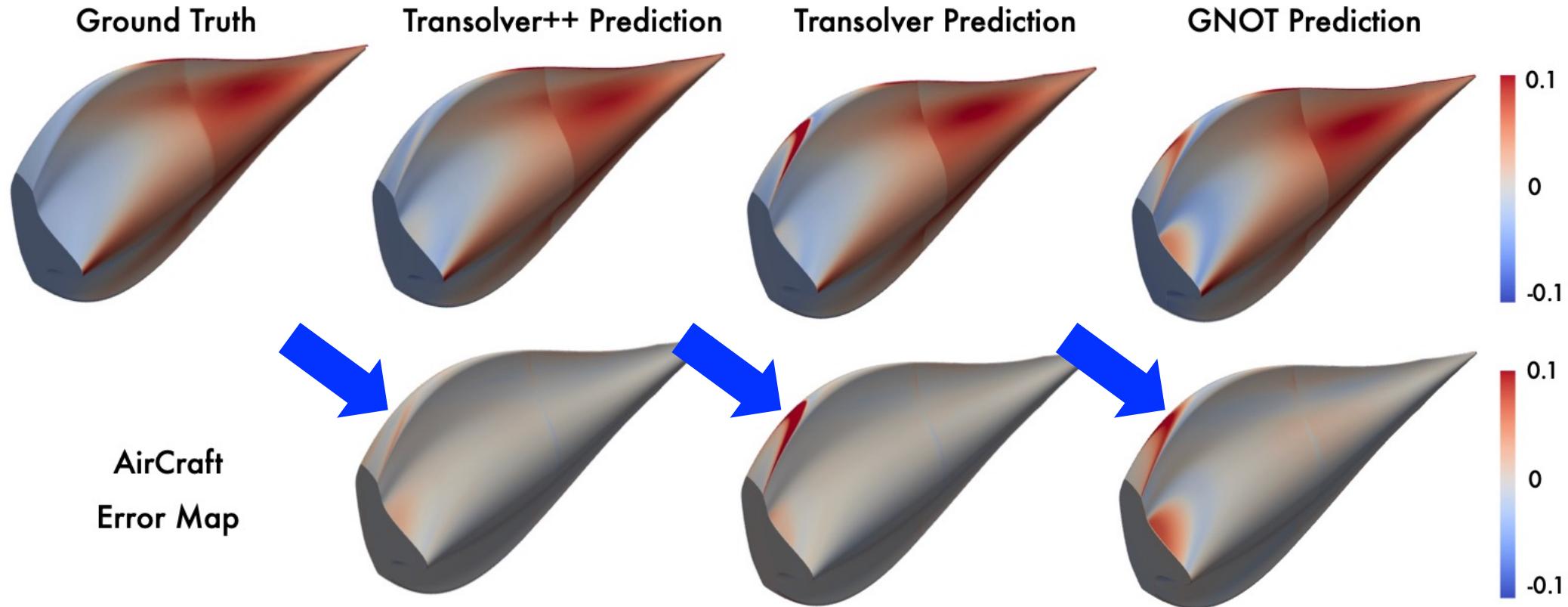
Industrial-level Applications: Car Design



Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 3.6%; Relative Field Error = 11%.

Industrial-level Applications: AirCraft Design



Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 1.4%; Relative Field Error = 6.4%.

Back to Transolver's Original Design!

Transolver-3: Scaling Up Transformer Solvers to Industrial-Scale Geometries

Hang Zhou¹ **Haixu Wu**¹ **Haonan Shangguan**¹ **Yuezhou Ma**¹ **Huikun Weng**¹ **Jianmin Wang**¹
Mingsheng Long¹

Hang Zhou

Haixu Wu

Haonan ShangGuan

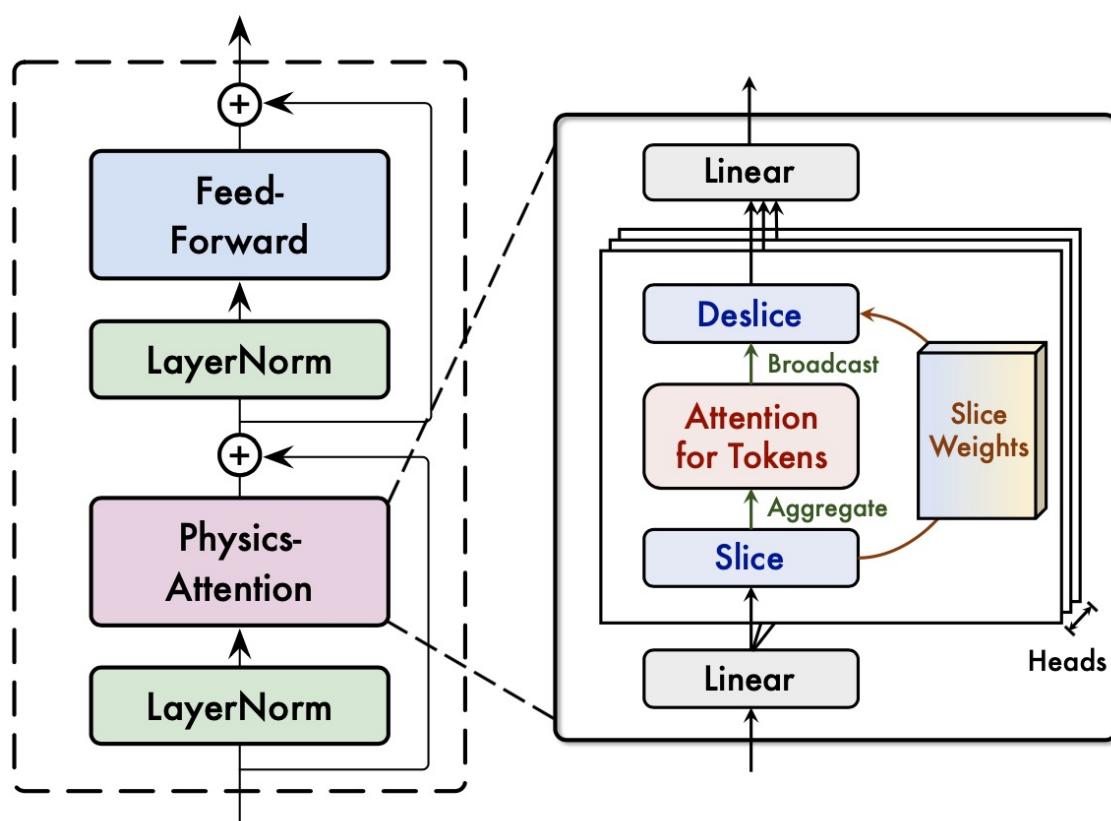
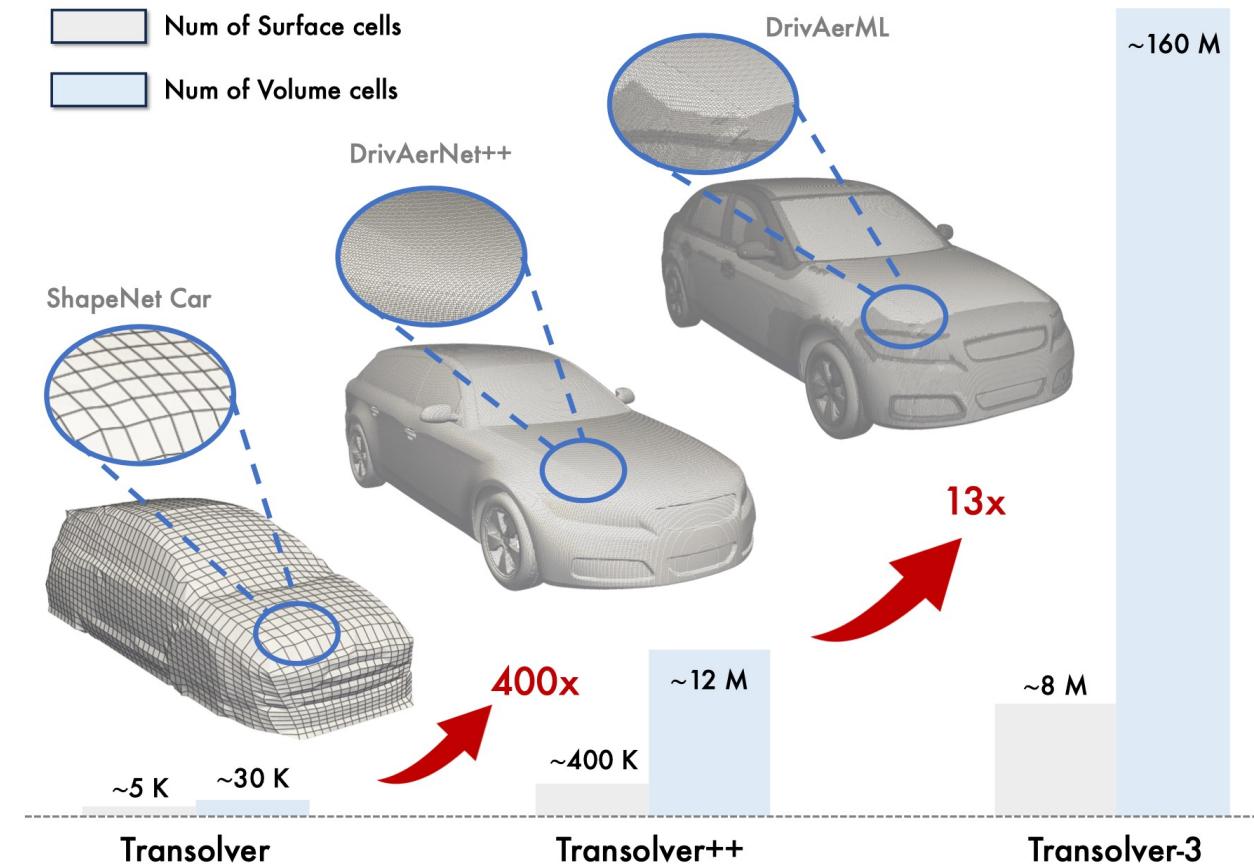
Yuezhou Ma

Huikun Weng

Jianmin Wang

Mingsheng Long

Scale to Over 100-Million-Cell Geometries



Detailed Complexity Analysis

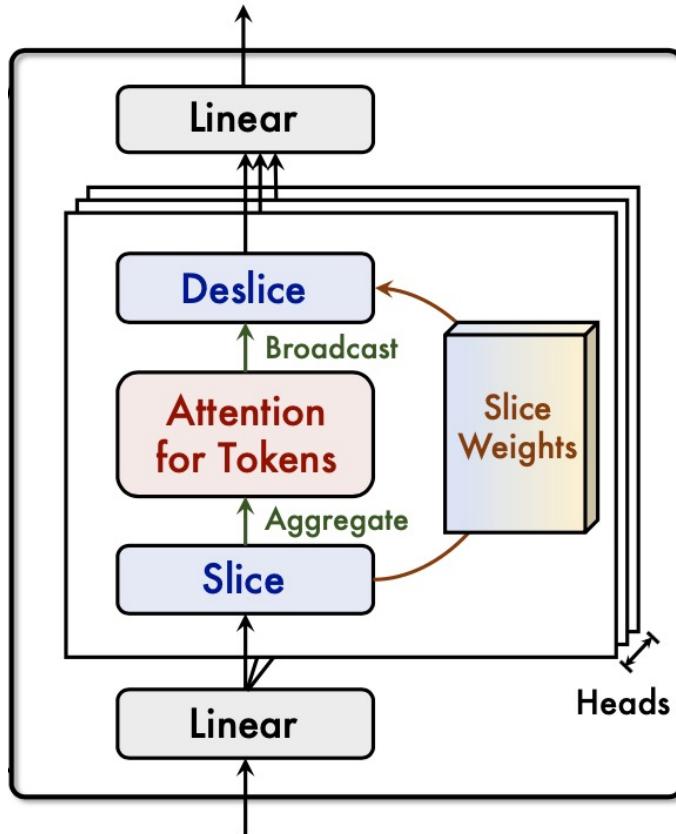


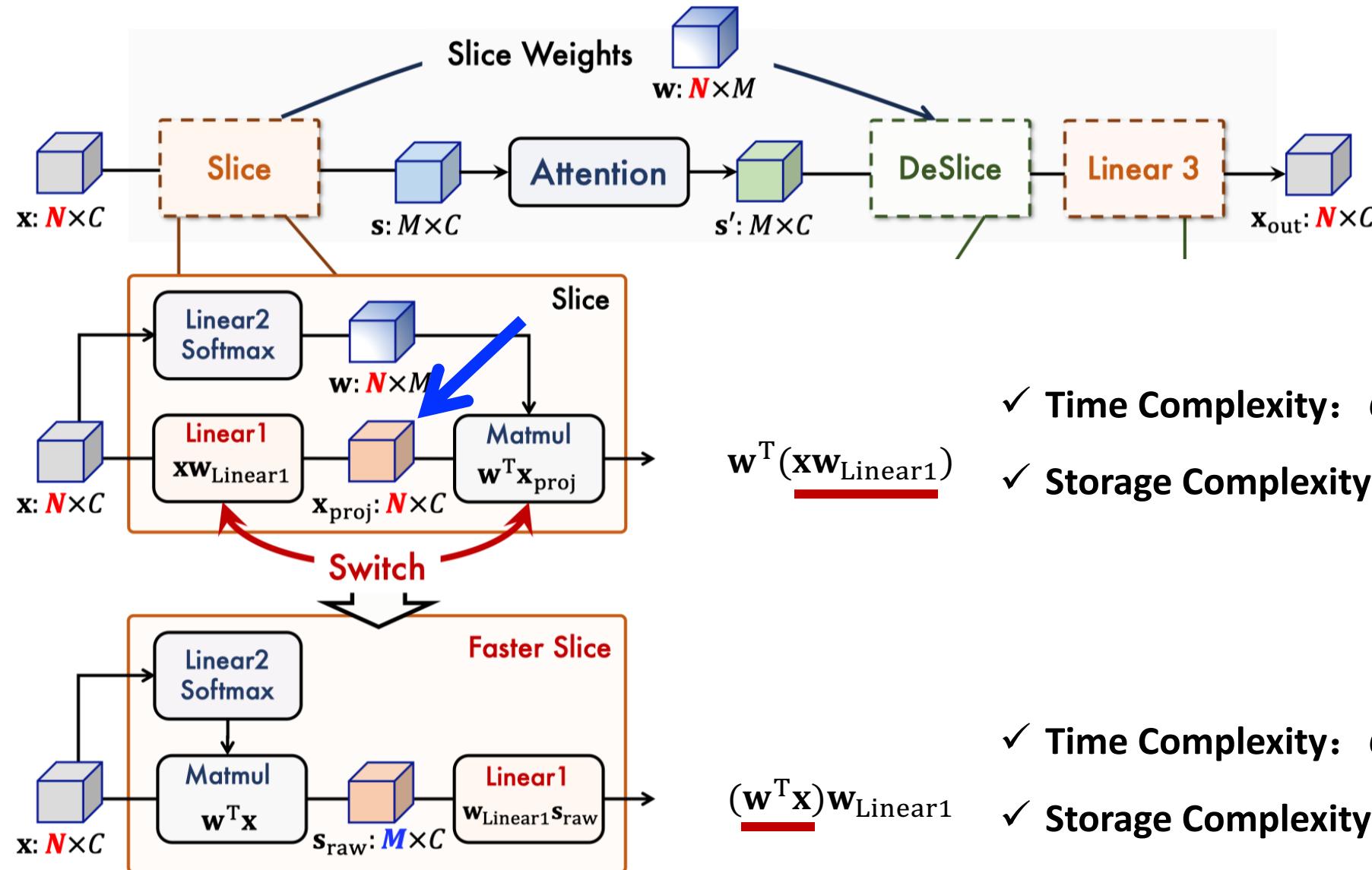
Table 1. Complexity Analysis of Original Physics-Attention.

Operation	Time Complexity	Space Complexity
$\text{Linear1}(\mathbf{x})$	$O(NC^2)$	$O(NC)$
$\text{Softmax}(\text{Linear2}(\mathbf{x}))$	$O(NCM)$	$O(NM)$
$(\mathbf{w}\mathbf{d}^{-1})^\top \mathbf{x}_{\text{proj}}$	$O(NMC)$	$O(MC)$
$\text{Attention}(\mathbf{s})$	$O(M^2C)$	$O(M^2 + MC)$
$\mathbf{w}\mathbf{s}'$	$O(NMC)$	$O(NC)$
$\text{Linear3}(\mathbf{w}\mathbf{s}')$	$O(NC^2)$	$O(NC)$
N-Related Terms	5	4

Red double-headed arrows on the right indicate the complexity of the 'Slice' (vertical), 'Attn' (horizontal), and 'Deslice' (vertical) operations.

N (mesh size) $\gg C$ (hidden channels) $\geq M$ (physical states)
 we should care about all the terms related to N .

Faster Slice



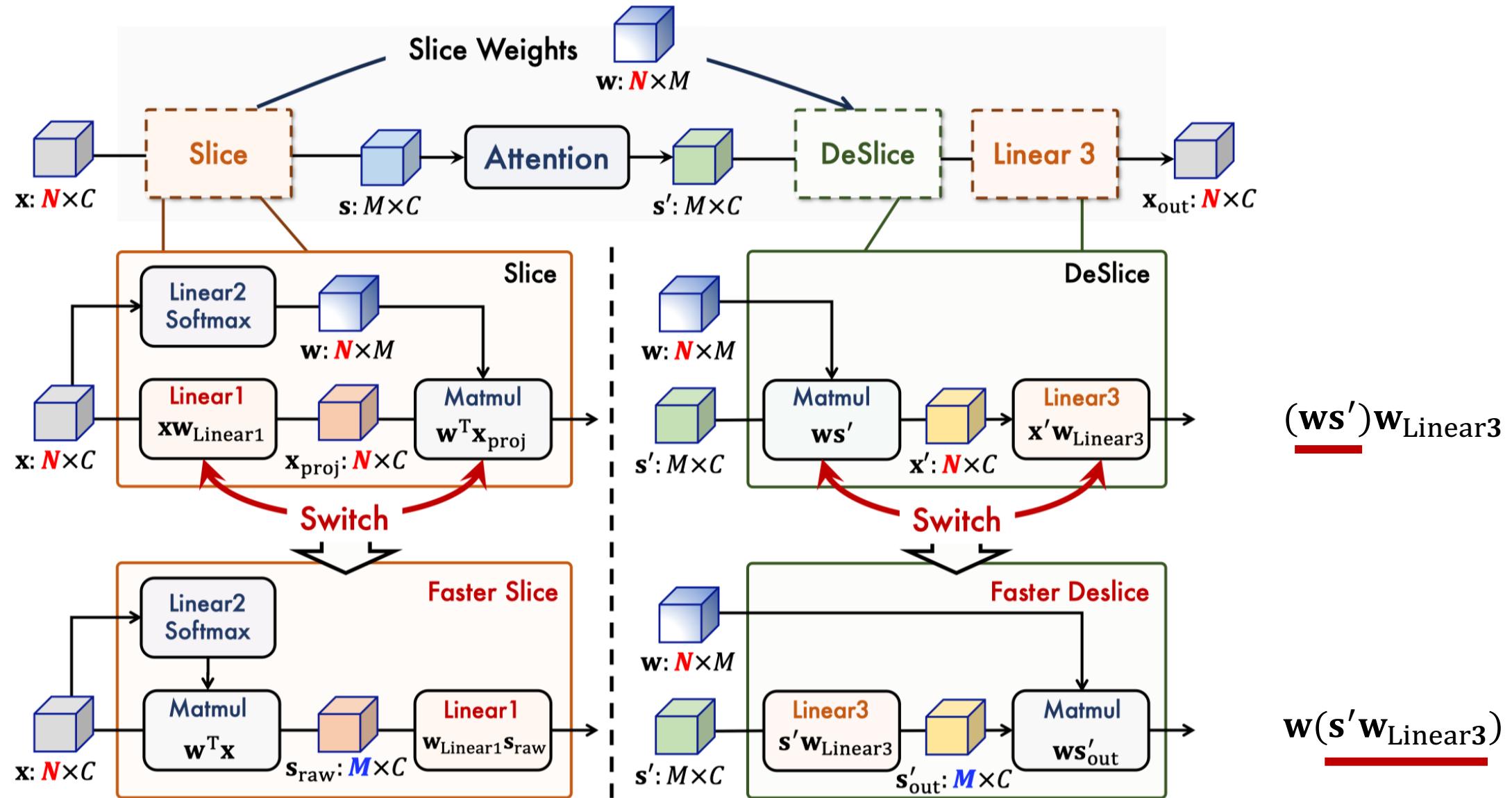
✓ **Time Complexity:** $\mathcal{O}(NC^2 + NMC)$

✓ **Storage Complexity:** $\mathcal{O}(NM + NC)$

✓ **Time Complexity:** $\mathcal{O}(MC^2 + NMC)$

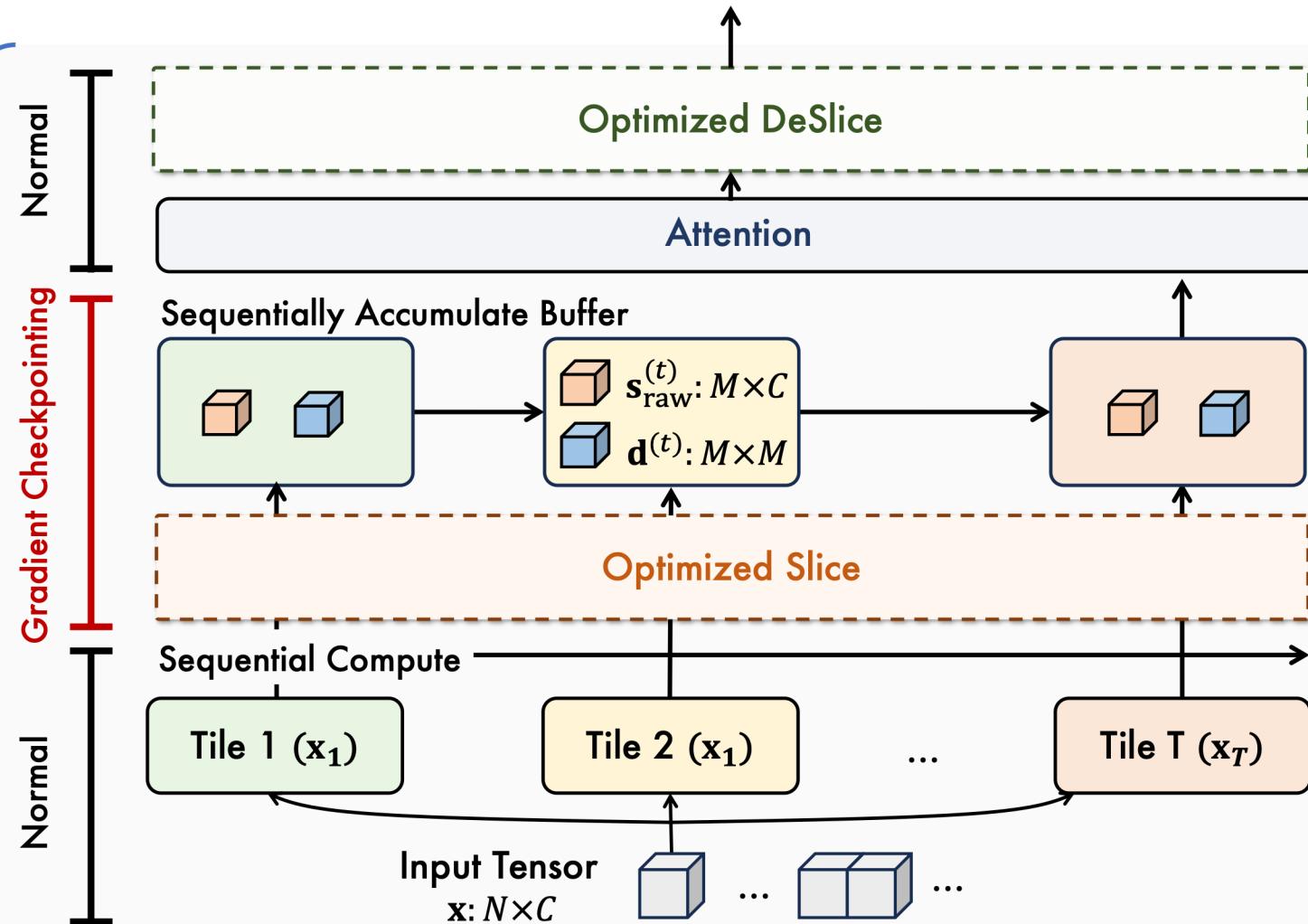
✓ **Storage Complexity:** $\mathcal{O}(NM + MC)$

Faster DeSlice

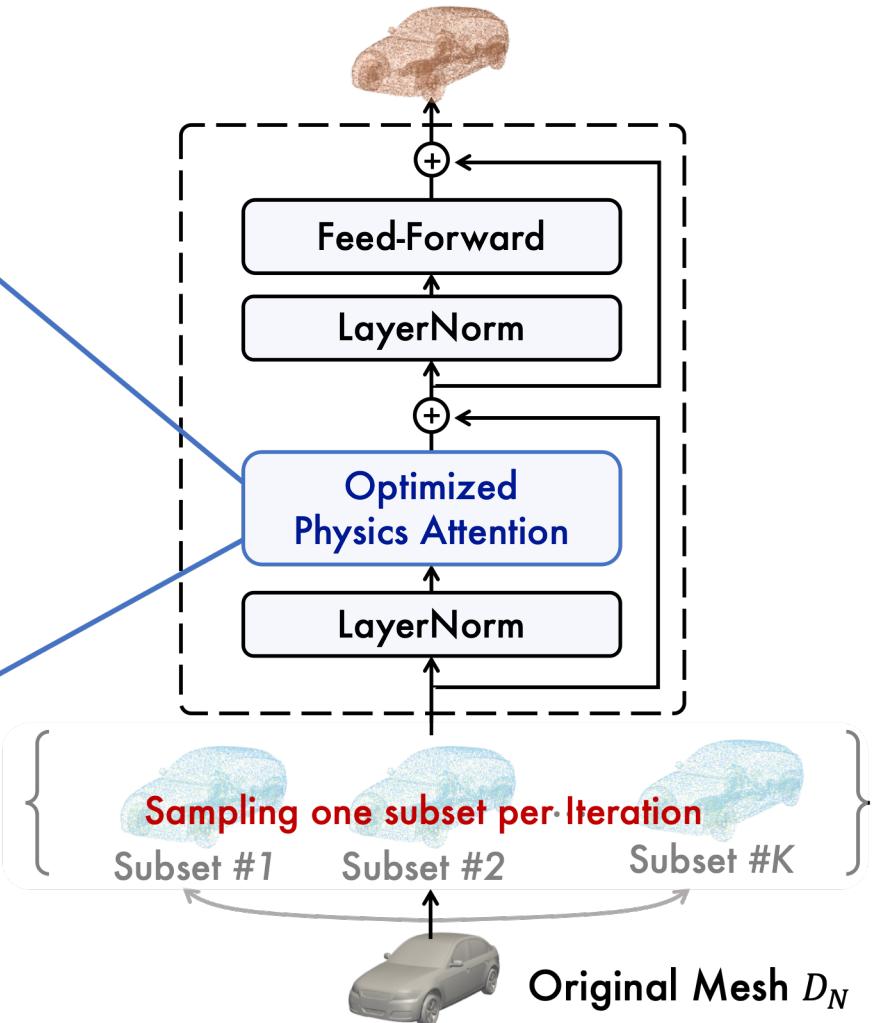


Training Scaling Framework

(a) Geometry Slice Tiling, reduce peaky memory usage

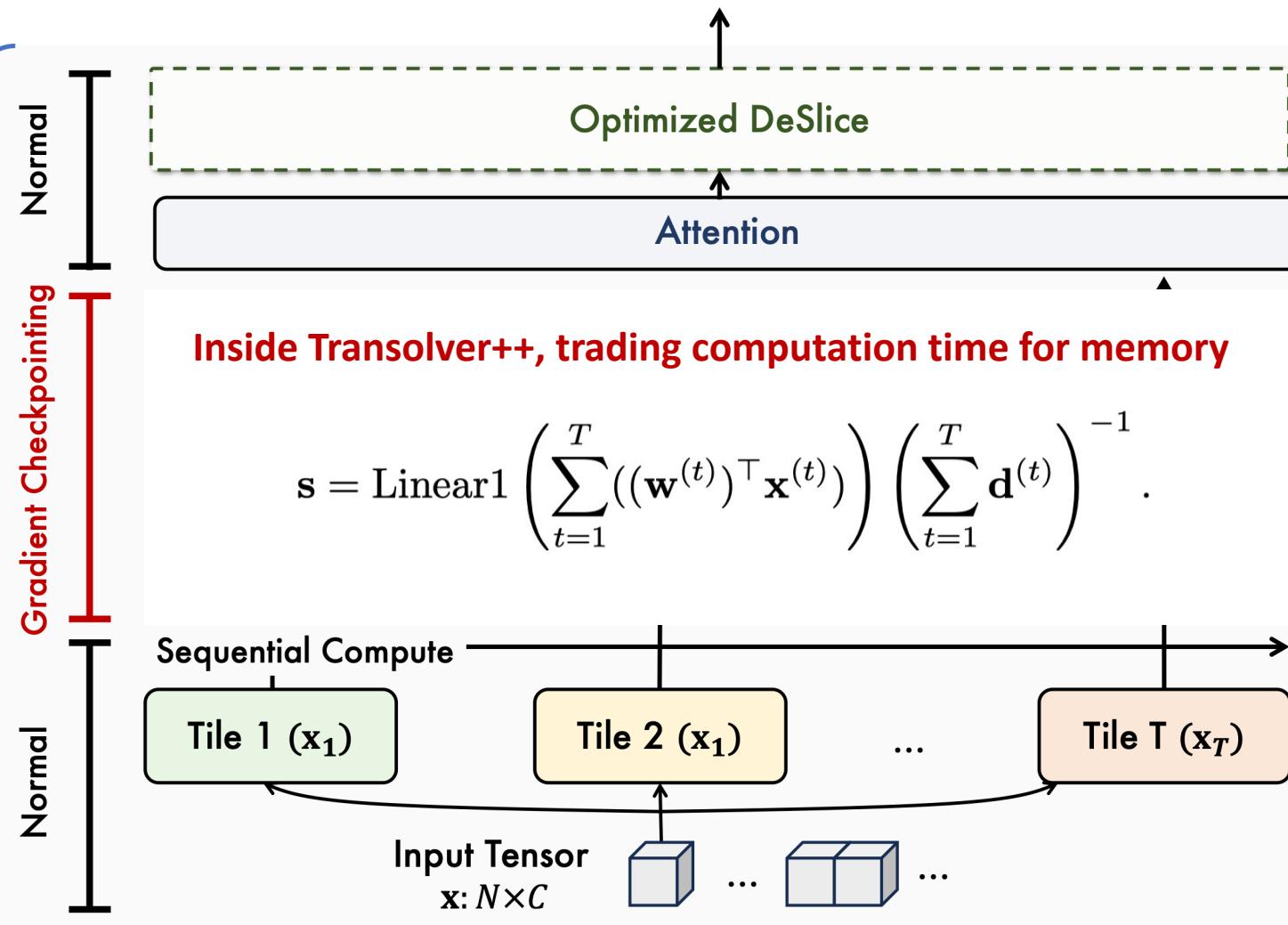


(b) Amortized Training

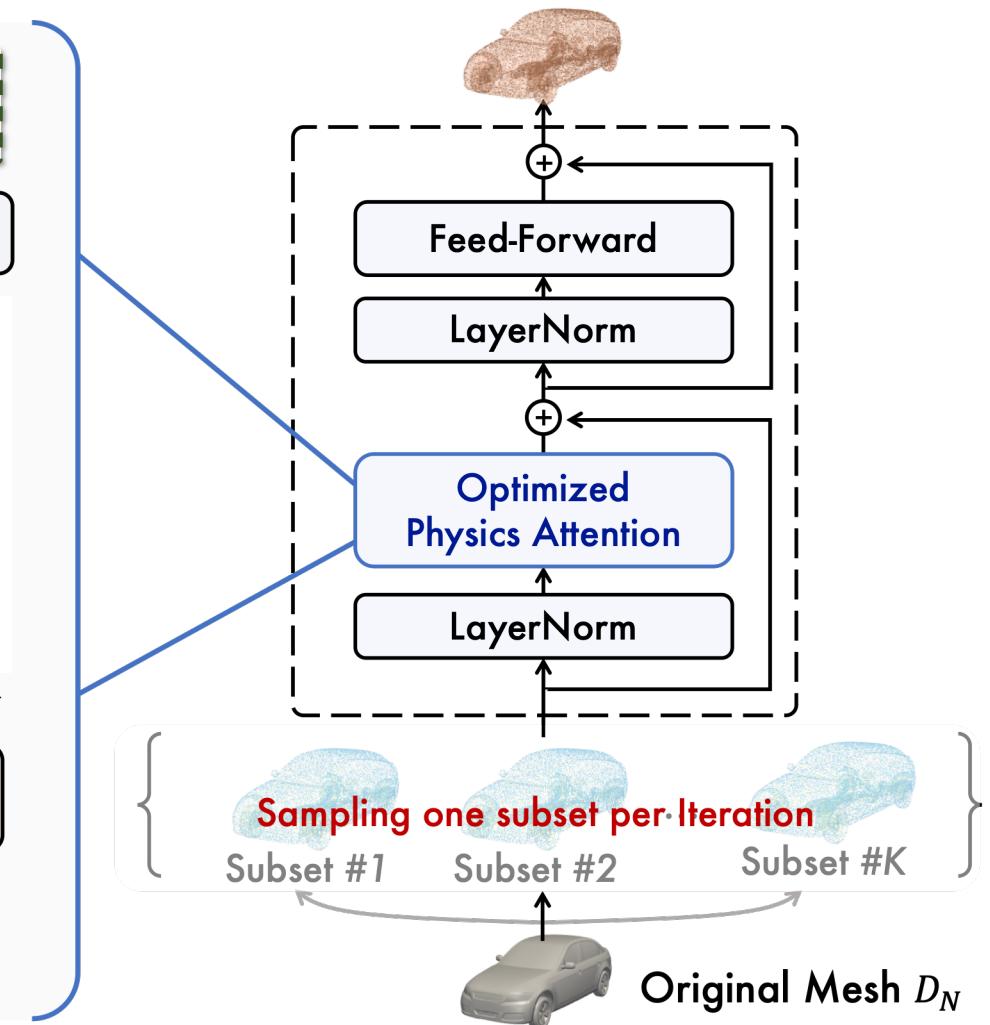


Training Scaling Framework

(a) Geometry Slice Tiling, reduce peaky memory usage

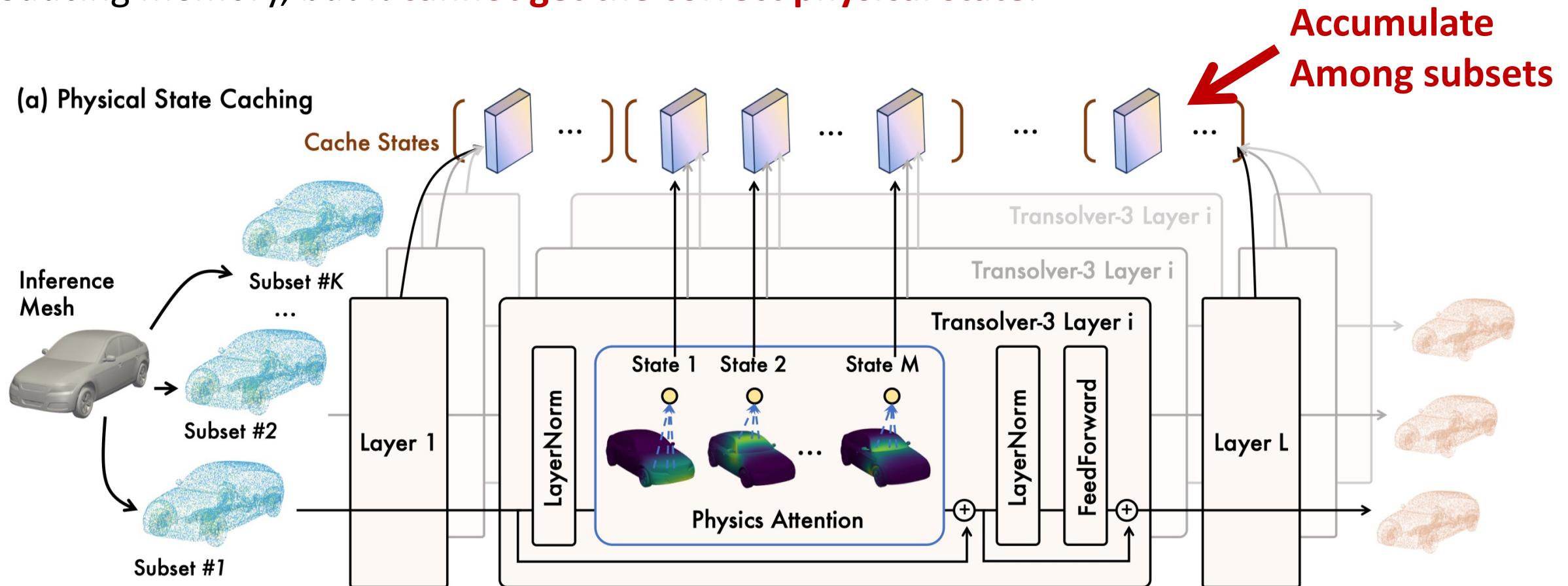


(b) Amortized Training



Inference Scaling Framework

Amortized training separates the PDE solving process into several subsets, successfully reducing memory, but it **cannot get the correct physical state**.



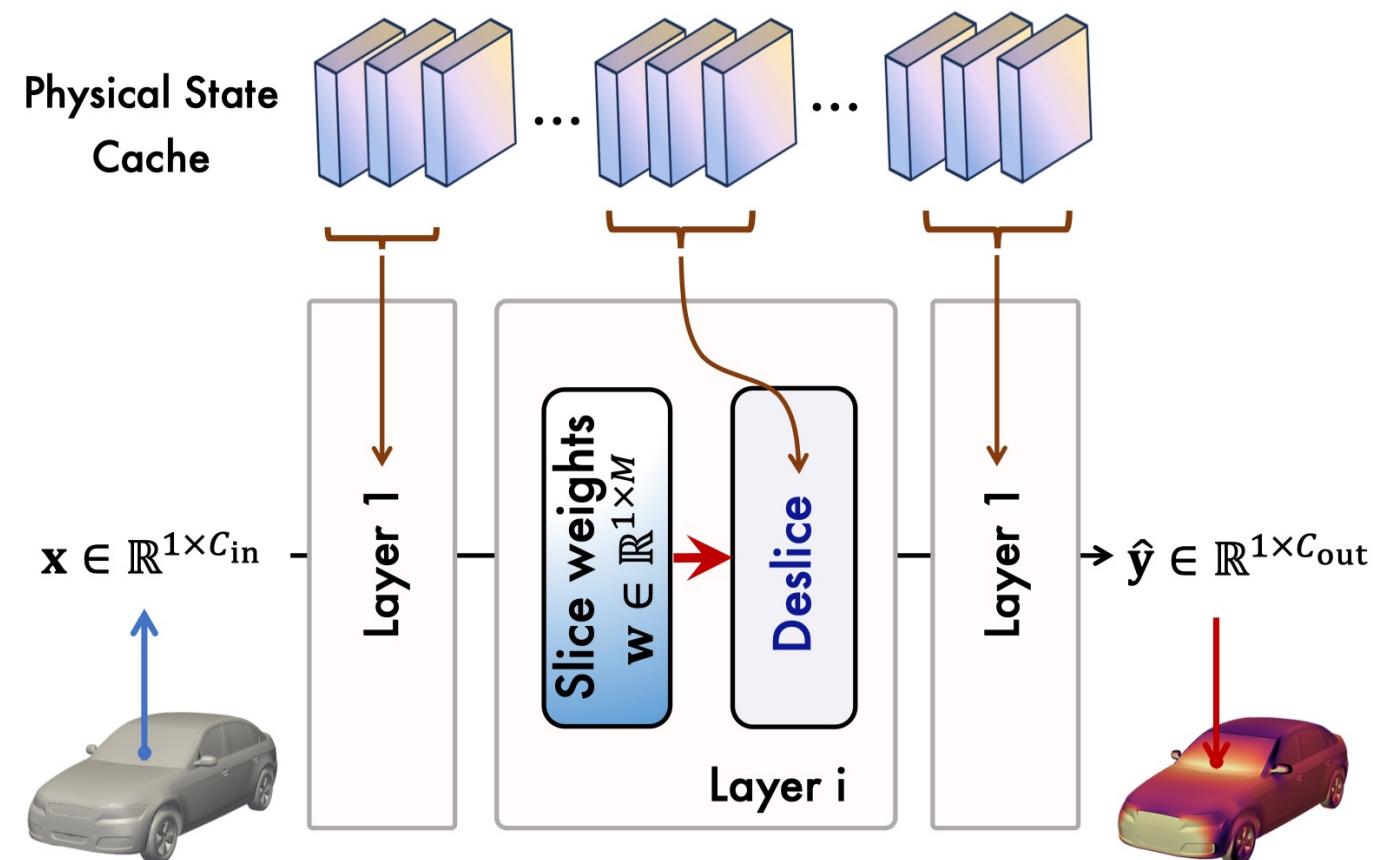
Inference Scaling Framework

Inference on the **arbitrary position (in PINN style)**.

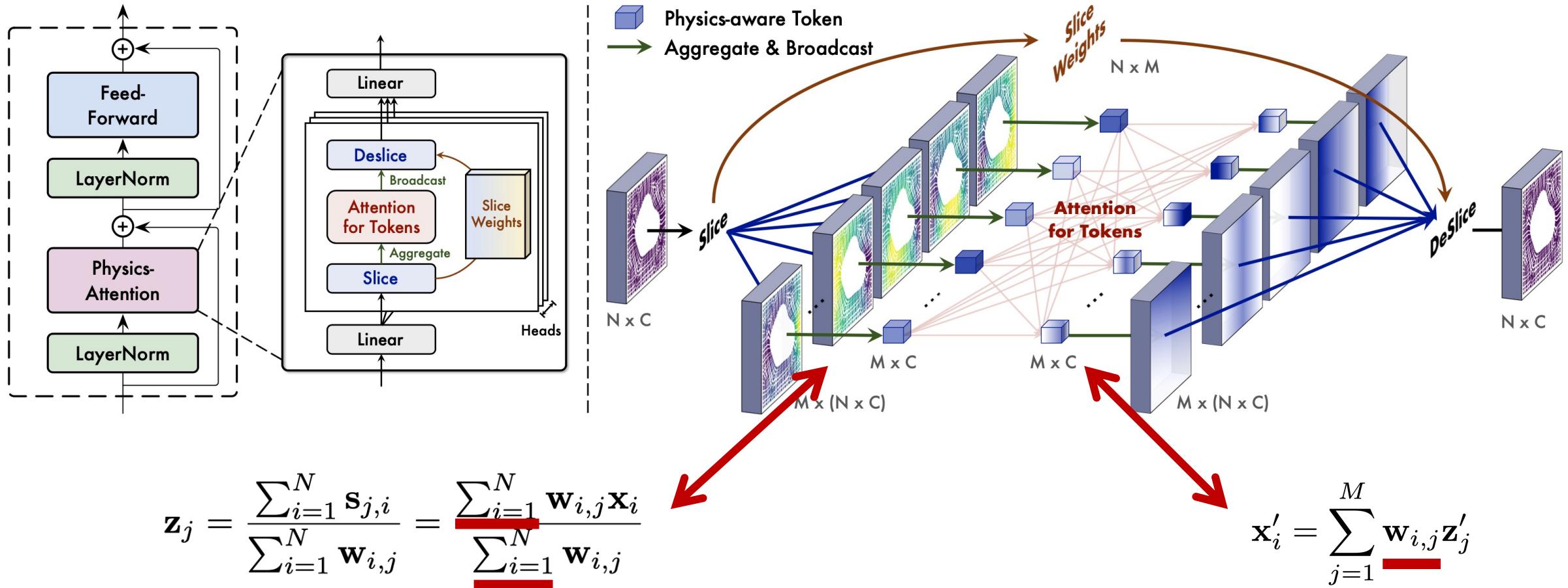
$$\mathbf{w}^{(l)} = \text{Softmax} \left(\text{Linear2}(\mathbf{x}^{(l)}) \right)$$

$$\mathbf{x}_{\text{out}}^{(l)} = \mathbf{w}^{(l)} \mathbf{s}'^{(l)}$$

Newly estimated
slice weights



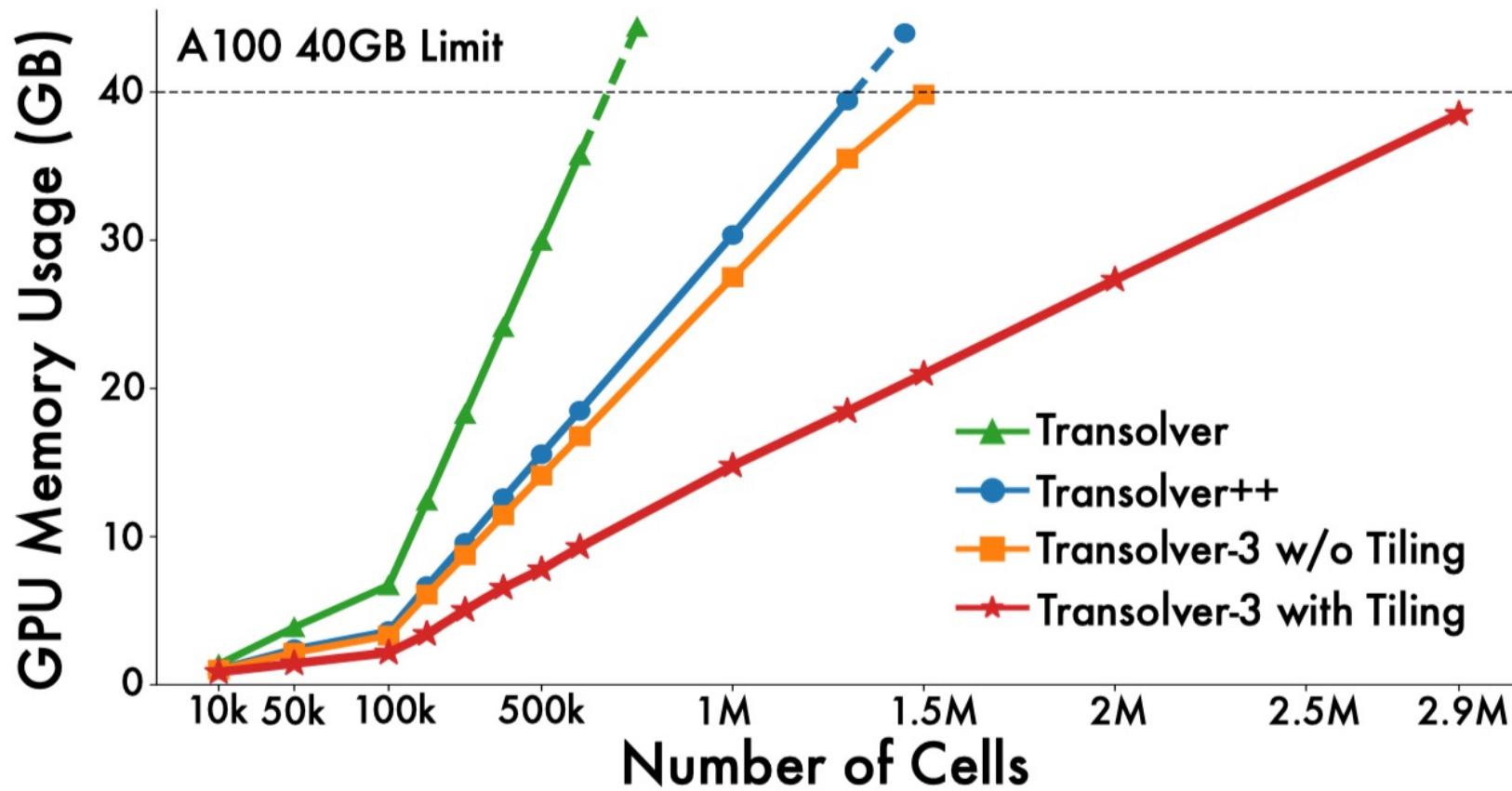
“Magic Design” in Transolver



Why adopt the global weighted sum?
Support Transolver++

Why reuse slice weights?
Support Transolver-3

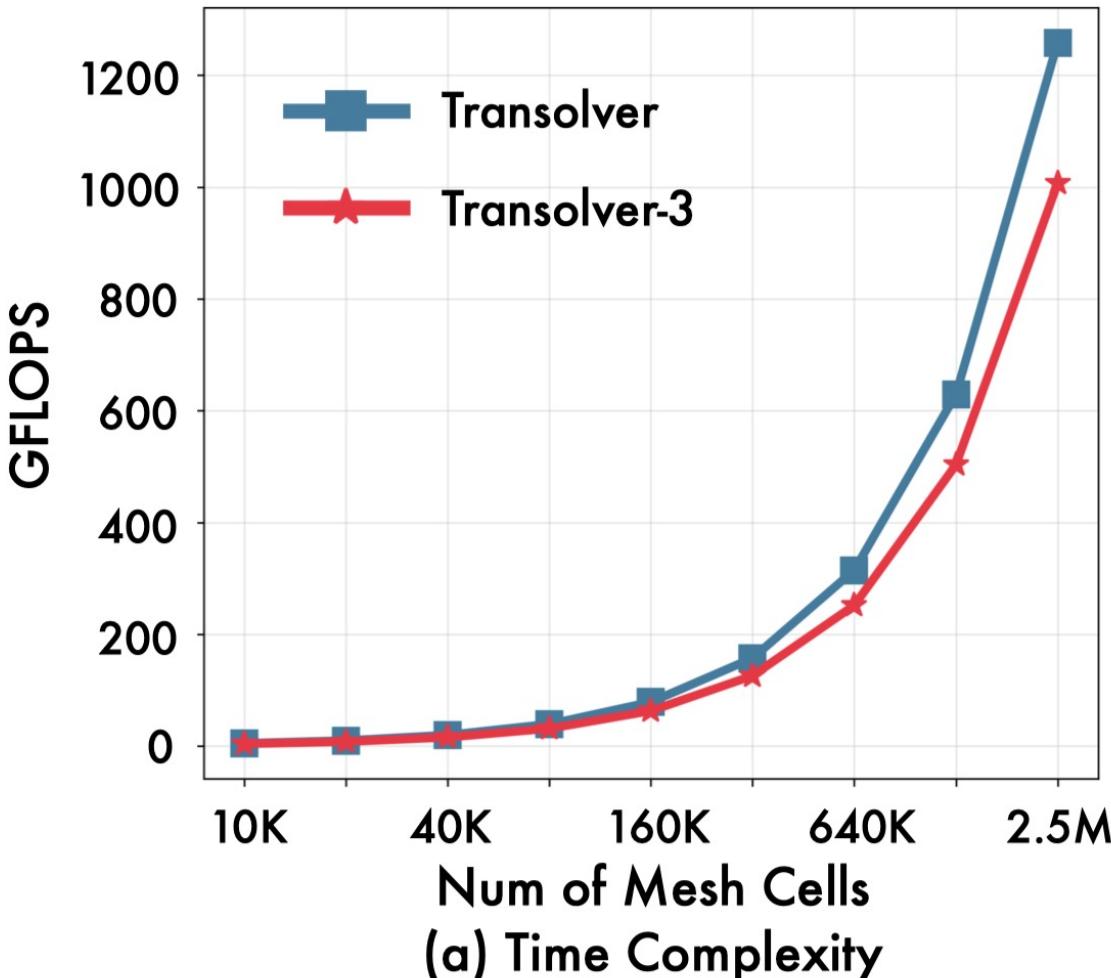
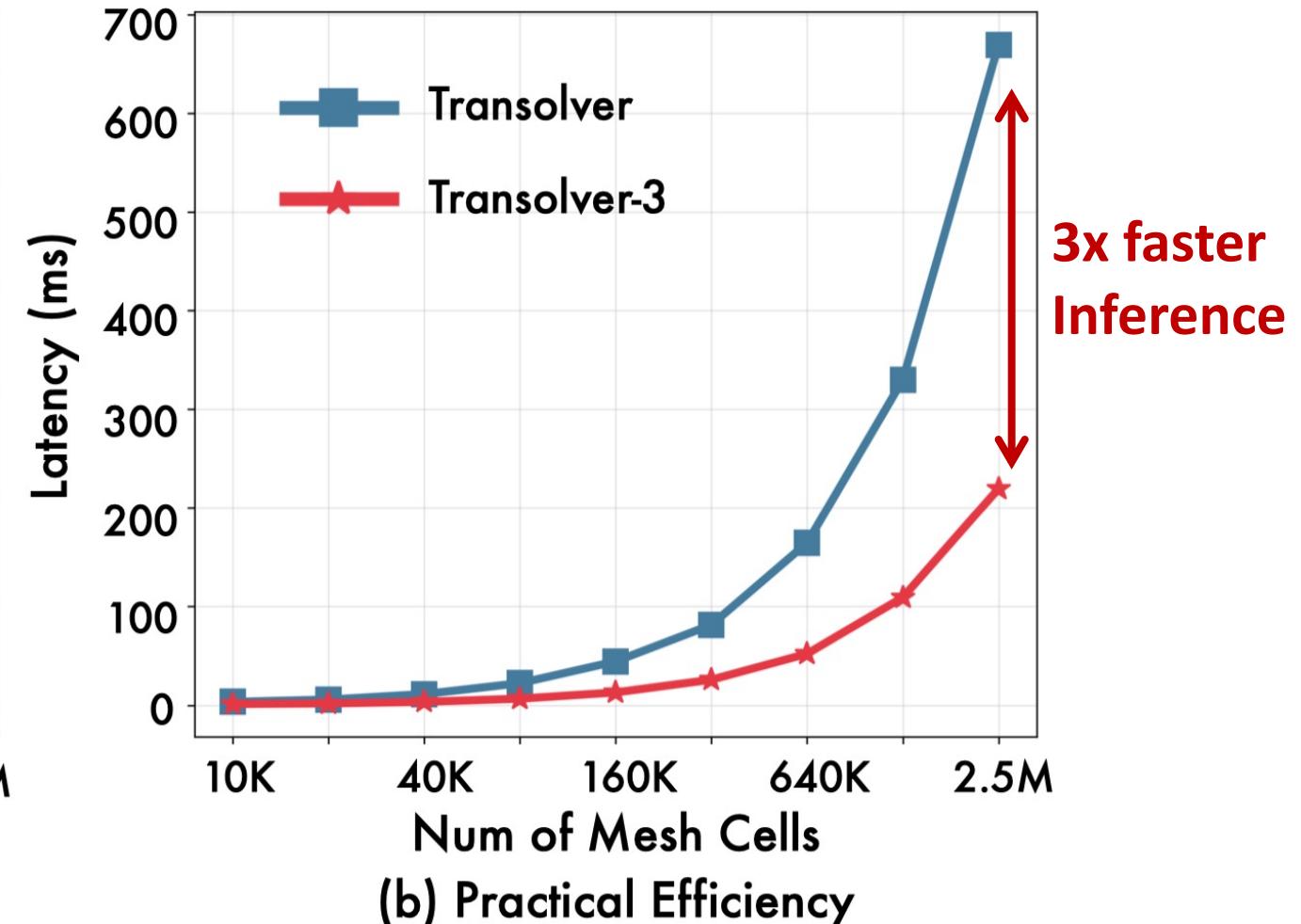
Efficiency Analysis (Geometry Scaling)



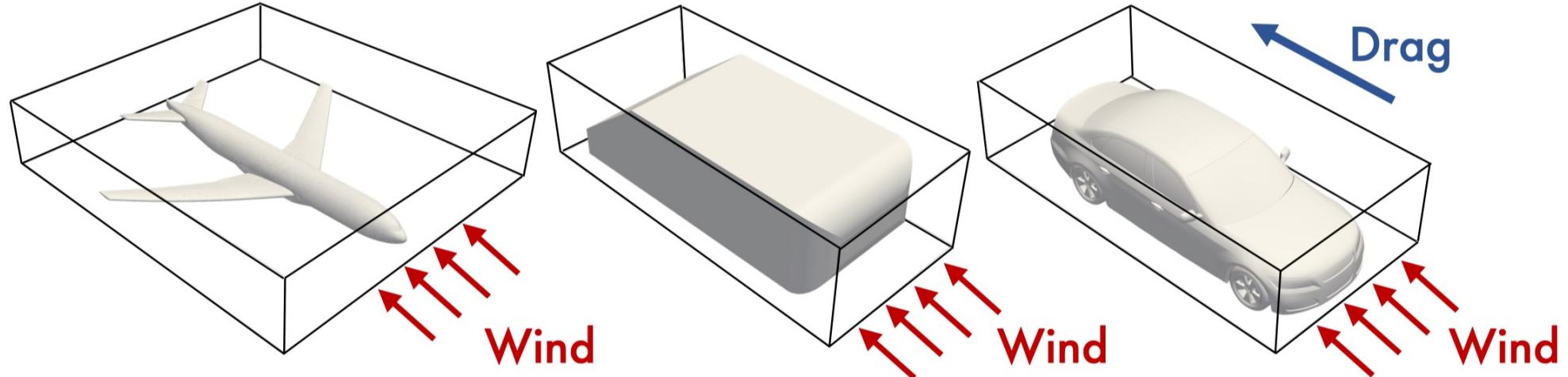
With slice tiling, Transolver-3 can process around **3M** points on a single GPU.

5x larger than vanilla Transolver, 2x larger than Transolver++

Efficiency Analysis (Inference Latency)



Experiments



(a) NASA-CRM

(b) AhmedML

(c) DrivAerML

400K cells per sample

4 GB

20M cells per sample

8 TB

160M cells per sample

31 TB

Main Results

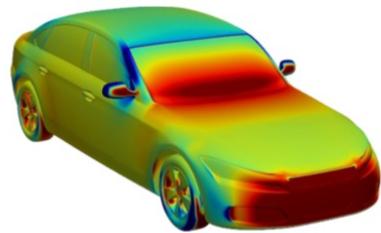
Table 4. Relative L2 errors (in %) of surface pressure p_s and skin friction coefficient C_f on the NASA-CRM dataset, and surface pressure p_s , volume velocity u , wall shear stress τ and volume pressure p_v on the AhmedML and DrivAerML datasets.

MODELS	NASA-CRM		AHMEDML			DRIVAEML				
	p_s	C_f	p_s	u	τ	p_v	p_s	u	τ	p_v
GRAPH U-NET*	15.85	15.61	6.46	4.15	7.29	5.18	16.13	17.98	27.84	20.51
GINO*	12.39	11.51	7.90	6.23	8.18	8.80	13.03	40.58	21.71	44.90
GAOT*	30.38	59.79	8.02	7.43	9.92	10.47	34.00	57.18	61.00	56.90
UPT	12.78	23.78	4.25	2.73	5.80	3.10	7.44	8.74	12.93	10.05
AB-UPT	9.77	<u>6.43</u>	3.97	1.94	5.60	2.07	<u>3.82</u>	5.93	7.29	<u>6.08</u>
TRANSOLVER*	9.61	7.04	<u>3.20</u>	1.81	<u>4.85</u>	2.41	4.81	6.78	8.95	7.74
TRANSOLVER++*	<u>9.51</u>	6.95	3.47	<u>1.78</u>	5.06	2.35	4.12	<u>4.70</u>	<u>6.42</u>	6.70
TRANSOLVER-3	8.71	5.85	2.96	1.60	4.81	<u>2.16</u>	3.71	4.14	5.85	5.72

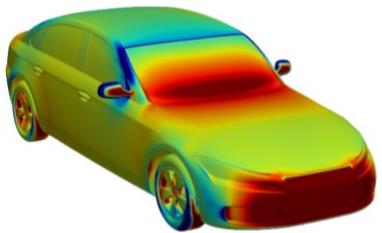
Without any architecture change, only upgrade training and inference paradigms.

Transolver still achieves the best performance.

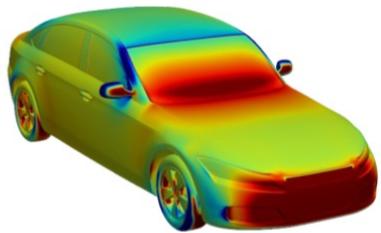
Ground Truth



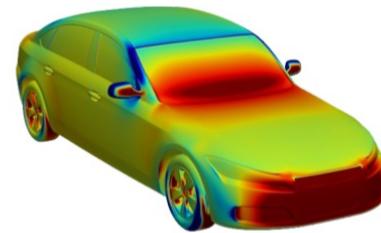
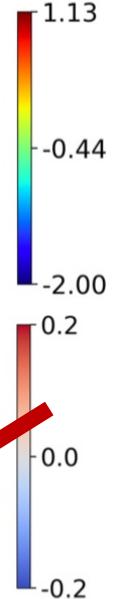
Transolver-3 Prediction



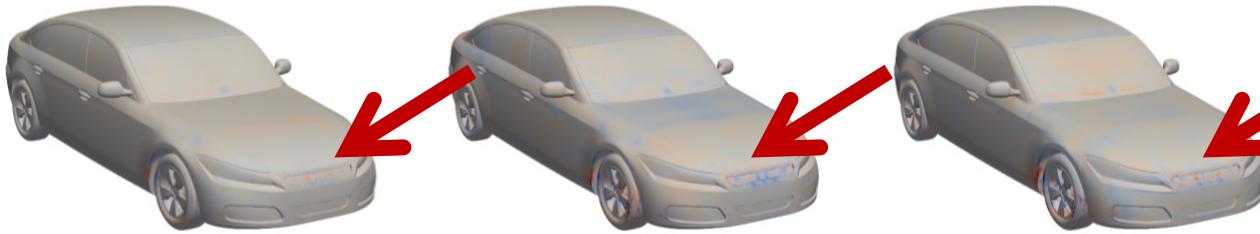
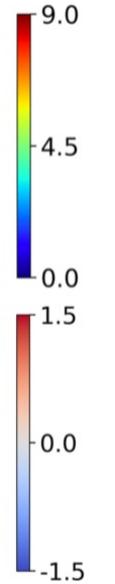
Transolver++ Prediction



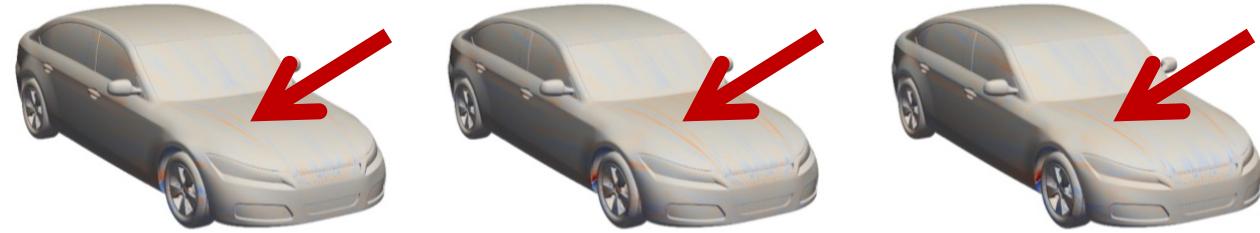
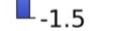
AB-UPT Prediction



DrivAerML p_s
Error Maps

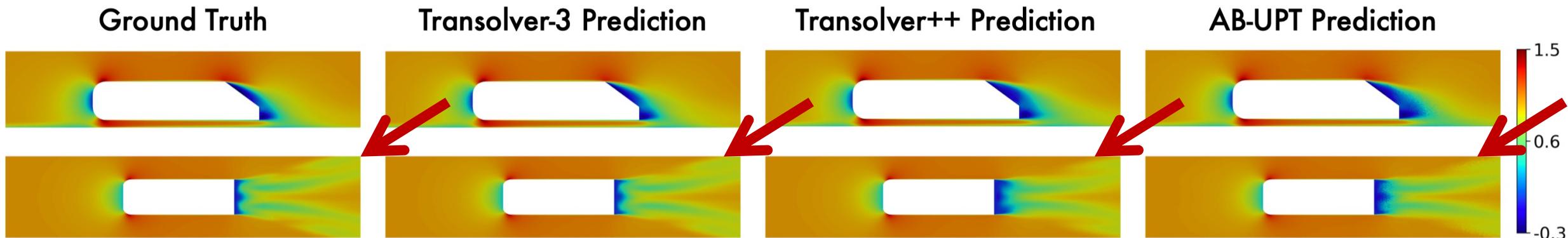


DrivAerML τ
Error Maps

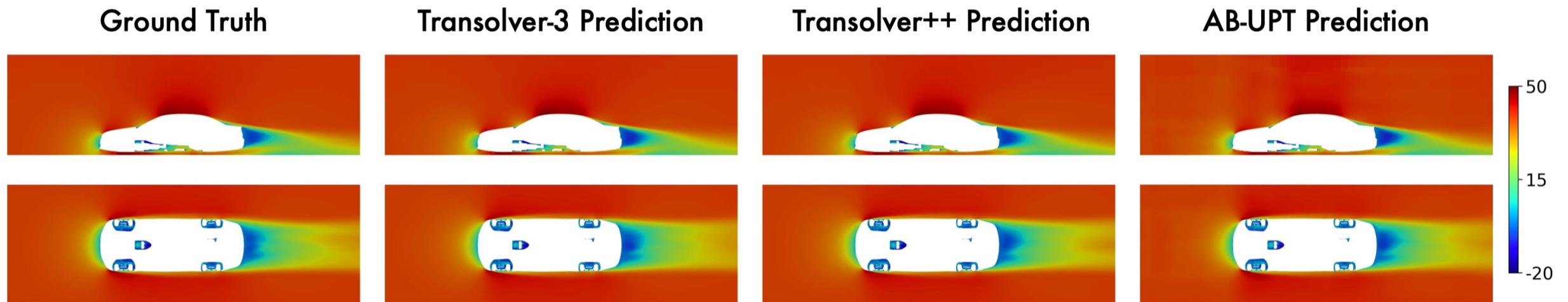


Showcase study

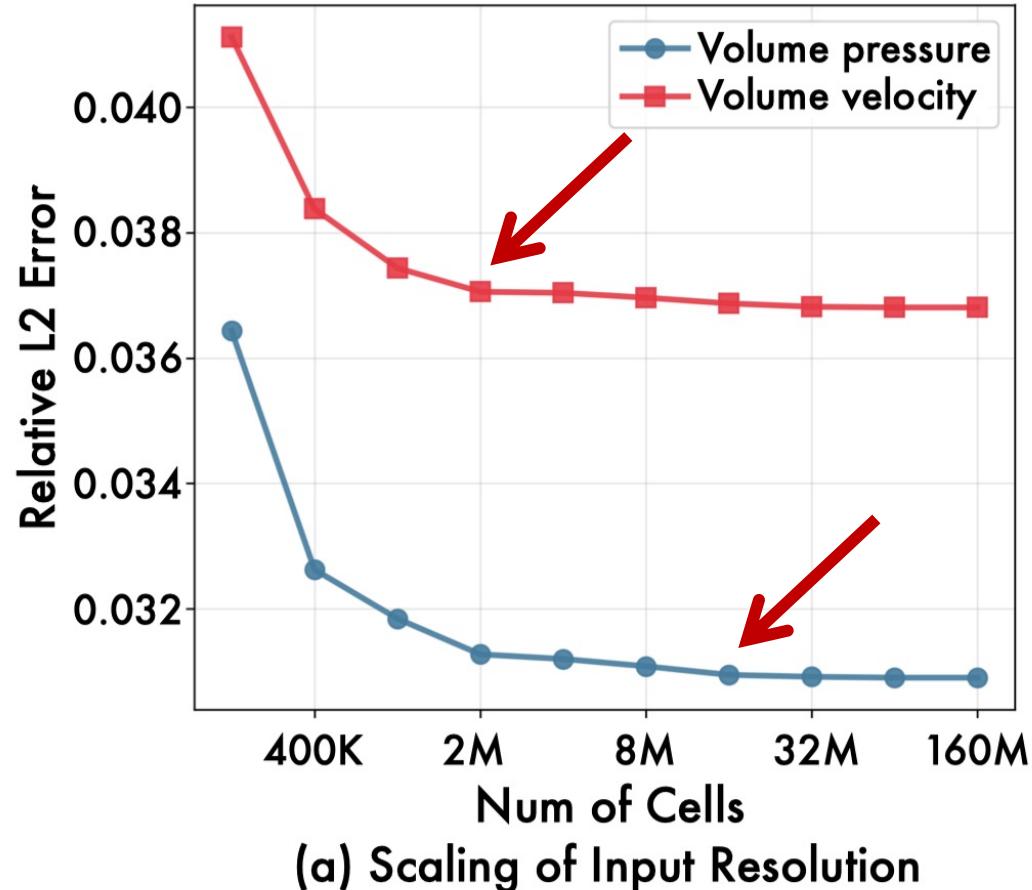
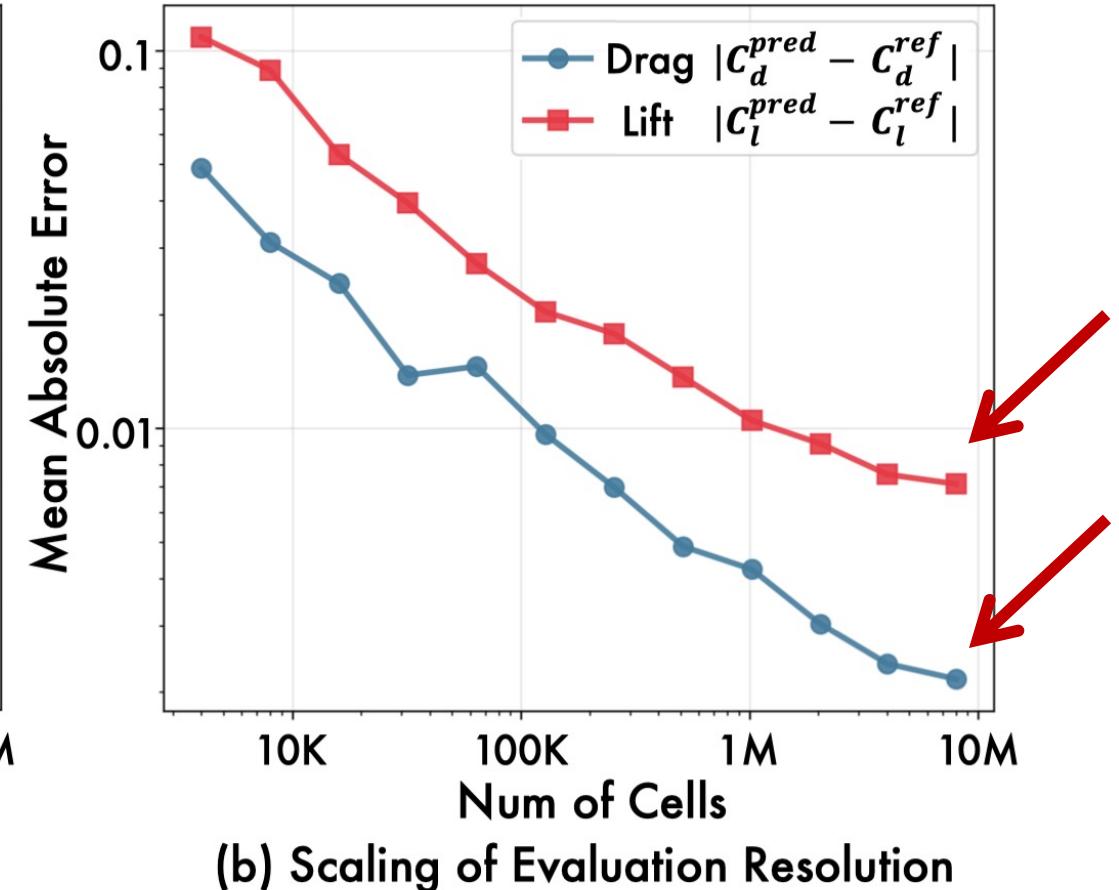
(1) AhmedML Benchmark



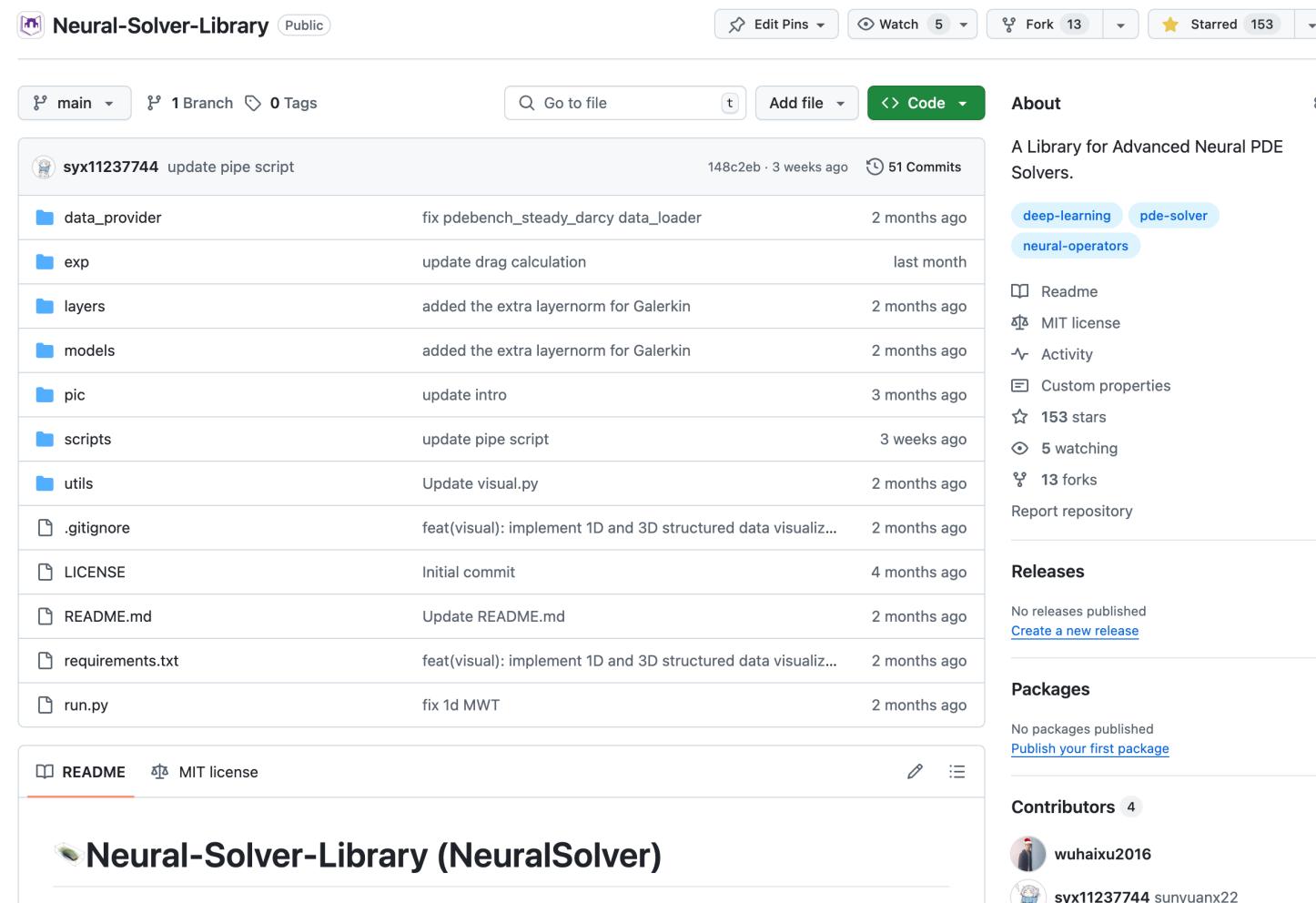
(2) DrivAerML Benchmark



Why Geometry Scaling

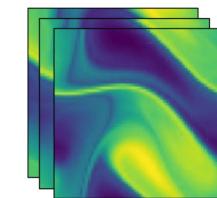


Neural-Solver-Library

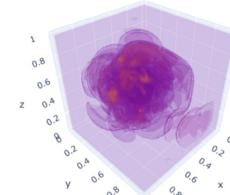
A screenshot of the GitHub repository page for "Neural-Solver-Library". The repository is public and has 13 forks and 153 stars. The main branch is "main" with 1 branch and 0 tags. The repository was last updated 3 weeks ago. The commit history shows contributions from "syx11237744" and "wuhaixu2016". The commits are categorized into "data_provider", "exp", "layers", "models", "pic", "scripts", "utils", ".gitignore", "LICENSE", "README.md", "requirements.txt", and "run.py". The repository includes a "About" section describing it as a library for advanced neural PDE solvers, and sections for "Releases", "Packages", and "Contributors".

Code Link: <https://github.com/thuml/Neural-Solver-Library>

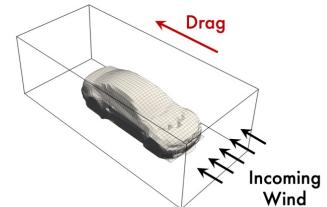
- ✓ 17 different PDE solvers
- ✓ 6 standard benchmarks, PDEBench and design tasks



Task 1: Standard



Task 2: PDEBench



Task 3: ShapeNet Car

Welcome to join us and add a new feature to this Library!

Acknowledgement

Mingsheng Long

Wojciech Matusik

Jianmin Wang

Hang Zhou

Yuezhou Ma

Huakun Luo

Haonan ShangGuan

Yuanxu Sun

Huikun Weng

清华大学
Tsinghua University

From Transolver to Transolver-3: Scaling Neural Solvers to Industrial-Scale Geometries

Haixu Wu

Computational Design and Fabrication Group, MIT CSAIL

Feb 04, 2026