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Turbulence Atmospheric circulation

Real-world Phenomena

Stress

How to understand the world?

Images? Videos? World Model?
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Turbulence Atmospheric circulation

Real-world Phenomena

Stress

Beyond appearances, these phenomena are governed by scientific rules.
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Partial Differential Equations

Extensive physics processes can be precisely described as PDEs.

3-D Navier-Stokes equations
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Difficulties in Solving PDEs

It is hard (usually impossible) to obtain the analytic solution of PDEs

Ø Birch and Swinnerton-Dyer conjecture

Ø Hodge conjecture

Ø Navier–Stokes existence and smoothness

Ø P versus NP problem

John von Neumann Peter LaxDavid Hilbert Richard Courant

Ø Riemann hypothesis

Ø Yang–Mills existence and mass gap

Ø Poincaré conjecture (Solved)

Millennium Prize Problems
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PDE Solvers

Classic Numerical Methods

FEM, Spectral, etcNew Task Results

Ø Recalculation for every new sample

Ø Each round will incur huge costs

Stable vs. Slow and Discretized

Days or even Months

Discretized Mesh
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PDE Solvers

Neural PDE Solvers

Deep ModelsData Loss

Ø Training once, inference a lot

Ø Each round needs several seconds

An efficient / precise surrogate tool

( Ideally )

New Task Results

Classic Numerical Methods

FEM, Spectral, etcNew Task Results

Ø Recalculation for every new sample

Ø Each round will incur huge costs

Stable vs. Slow and Discretized
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A Valuable Direction

https://www.ansys.com/products/simai https://altair.com/physicsai

9

https://www.ansys.com/products/simai
https://altair.com/physicsai


0

10

20

30

40

50

60

70

2023 2024 2025

A Booming Direction

ICML 2024 Tutorial

Neural Operator
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Towards Practical Neural PDE Solvers

Large-scale Meshes Diverse PDEs, e.g. boundaries, coefficients, forcesComplex Geometries

LSM
(ICML 2023)

Transolver
(ICML 2024)

Transolver++
(ICML 2025)

Unisolver
(ICML 2025)

Transolver-3
(arXiv 2026)
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ICML | 2024
The Forty-first International Conference on Machine Learning

Haixu Wu Mingsheng LongJianmin WangHuakun Luo Haowen Wang

https://github.com/thuml/TransolverCode Link:

https://github.com/thuml/Transolver


Challenges in Practical Industrial Design

Task: Estimate the drag coefficient of a given shape:

Surrounding Wind & Surface Pressure

1. Large-scale meshes → Huge computation cost 

2. Complex and unstructured geometrics → Complex geometric learning

3. Naiver-Stokes equation → Intricate physical correlations
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Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc
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Attention Mechanism as Global Integral

Use the token sequence as an 
approximation of the integral

Attention weight as kernel function

Dot-product Similarity

16Kovachki et al., Neural Operator: Learning Maps Between Function Spaces, JMLR 2022



Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

1. Quadratic complexity

2. Hard to capture physical correlations among massive points
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Transformer-based PDE Solvers

…

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

How to efficiently capture physical correlations underlying discretized meshes

is the key to “transform” Transformers into practical PDE solvers
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A Foundational Idea of Transolver

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics
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A Foundational Idea of Transolver

Transolver

Learning intrinsic physical states underlying

complex and large-scale geometries

Better Efficiency, Geometry, Physics ModelingPhysics Domain

Discretized Domain

Previous Work

Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics
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Learning Physical States

Mesh points under similar physical states will be ascribed to the same slice

and then encoded into a physics-aware token.
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Overview of Transolver

Transolver applies attention to learned physical states (Physics-Attention)

① Mesh → physics ② Attention (Integral) ③ Physics → Mesh
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Step 1: Mesh → Physics 

① Mesh → physics

To obtain physics-aware tokens
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Learning Physics-aware Tokens

1. Assign each point to slices with weights learned from features

𝑵 Points to 𝑴 Slices

Softmax for low-entropy slices
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Learning Physics-aware Tokens

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens
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Step 2: Physics Interaction

② Attention among physics tokens

Approximate Integral to solve PDEs
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Attention among physics tokens

1. Complexity: 𝒪(𝑁!𝐶) → 𝒪(𝑀!𝐶)

2. Capture interactions among physics states

3. Theorem: Attention as learnable integral operator

Canonical attention among physics tokens
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Step 3: Physics → Mesh

③ Physics → Mesh

Project physics information back to mesh
28

Slice weight



Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral

Since attention mechanism is applied to tokens encoded from slices, the step 2 

(attention part of Transolver) is a learnable integral for the physics domain

Is Physics-Attention still an input domain integral?
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Theoretical Understanding of Transolver

All the designs can be directly derived.

Physics-Attention is still an input domain integral.
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Experiments

Six standard benchmarks, two practical design tasks

More than 20 baselines
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Standard PDE-Solving Benchmarks

Transolver achieves 22% error reduction over the second-best model
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Car and Airfoil Design

Surface Pressure Error Map

Surrounding Velocity Error Map

Model capability in “ranking” designs
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Efficiency

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.
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Running Time GPU Memory



Physical States Visualization
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Pursuing PDE Foundation Models: Scalability

1. Resolution: Consistent performance at varied scales

2. Data: Benefiting from larger training data

3. Parameter: Benefiting from more parameters
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Pursuing PDE Foundation Models: Generalization

Transolver still performs best (Spearman’s correlation ~ 99%) in OOD settings 
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Open-Source Code

https://github.com/thuml/TransolverCode Link: Code for Transolver

Code for Transolver in Physicsnemo
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https://github.com/thuml/Transolver


NVIDIA PhysicsNeMo

https://docs.nvidia.com/physicsnemo/25.08/physicsnemo/examples/cfd/external_aerodynamics/transolver/README.html

“The Transolver model 
is a promising, 
transformer-based 
model that produces 
high-quality 
predictions for CFD 
surrogate simulations.”
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https://docs.nvidia.com/physicsnemo/25.08/physicsnemo/examples/cfd/external_aerodynamics/transolver/README.html


NVIDIA PhysicsNeMo

Nabian et al., Automotive Crash Dynamics Modeling Accelerated with Machine Learning, arXiv 2025
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“Magic Design” in Transolver

44

Why adopt the global weighted sum?
Support Transolver++

Why reuse slice weights?
Support Transolver-3



ICML | 2025
The Forty-second International Conference on Machine Learning

Haixu Wu Mingsheng LongJianmin WangHuakun Luo Hang Zhou Lanxiang Xing Yichen Di

https://github.com/thuml/Transolver_plusCode Link:

https://github.com/thuml/Transolver_plus


Extremely Large Geometries

32k Mesh Points 2.5M Mesh Points

46



10-100x Larger than Previous Benchmarks
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Transolver++: Enable PDE Solving in Million-Scale Geometries

48



Difficulties on Applicability

Large Geometrics In real-world applications

2. Deep models are expected to be Scalable

1. More complex geometrics with plenty of details

3. Models are expected to be more accurate
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Transolver applies attention to learned physical states

① Mesh → physics ② Physics-Attention  ③ Physics → Mesh

Revisiting Transolver
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Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states 
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Degenerate in large-scale geometries

Improved physics learning



Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states 2. Efficiency Bottleneck

- Even a single intermediate representation 
of one million mesh points will consume 
2GB of GPU memory
- Previous upper bound of geometry scale is 
600k on a single GPU supported by 
Transolver
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Upgrade 1: Physics-Attention with Eidetic States

Architectural Design
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Upgrade 1: Physics-Attention with Eidetic States

Local Adaptive Mechanism

• Utilize the local properties of each mesh point

• Learns the uncertainty of each points

• Adaptively change the temperature of each point

Slice reparameterization
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Upgrade 2: Parallelism Framework

Transolver is under a natively parallel formulation.
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Split the mesh into 
multiple GPUs

Compute physical states 
in each GPU

Accumulate 
multi-GPU results

Equivalent result

Additivity of physical states:



Upgrade 2: Parallelism Framework

Overhead Analysis Further SpeedUp
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Industrial-level Applications: Car Design

Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 3.6%; Relative Field Error = 11%.
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Industrial-level Applications: AirCraft Design

Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 1.4%; Relative Field Error = 6.4%.
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Haixu Wu Mingsheng LongJianmin WangHang Zhou Haonan ShangGuan Yuezhou Ma Huikun Weng

Back to Transolver’s Original Design!



Scale to Over 100-Million-Cell Geometries
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Detailed Complexity Analysis 

Slice

Attn

Deslice

N (mesh size) >> C (hidden channels) >= M (physical states)
we should care about all the terms related to N.
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Faster Slice

𝐰!(𝐱𝐰"#$%&'()

(𝐰!𝐱)𝐰"#$%&'(

ü Time Complexity：𝒪 𝑵𝑪𝟐 +𝑵𝑴𝑪

ü Storage Complexity: 𝒪 𝑵𝑴+𝑵𝑪

ü Time Complexity：𝒪 𝑴𝑪𝟐 +𝑵𝑴𝑪

ü Storage Complexity: 𝒪 𝑵𝑴+𝑴𝑪
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Faster DeSlice

(𝐰𝐬")𝐰#$%&'(𝟑

𝐰(𝐬"𝐰#$%&'(𝟑)
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Training Scaling Framework
(a) Geometry Slice Tiling, reduce peaky memory usage (b) Amortized Training
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Training Scaling Framework
(a) Geometry Slice Tiling, reduce peaky memory usage (b) Amortized Training

Inside Transolver++, trading computation time for memory
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Inference Scaling Framework

Amortized training separates the PDE solving process into several subsets, successfully 
reducing memory, but it cannot get the correct physical state.

Accumulate
Among subsets
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Inference Scaling Framework

Inference on the arbitrary position (in PINN style).

𝐰(𝒍) = Softmax Linear2 𝐱 𝒍

𝐱𝐨𝐮𝐭
(𝒍) = 𝐰(𝒍)𝐬'()

*(𝒍)

Cached physical states

Newly estimated
slice weights
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“Magic Design” in Transolver

68

Why adopt the global weighted sum?
Support Transolver++

Why reuse slice weights?
Support Transolver-3



Efficiency Analysis (Geometry Scaling) 

With slice tiling, Transolver-3 can process around 3M points on a single GPU.

5x larger than vanilla Transolver, 2x larger than Transolver++
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Efficiency Analysis (Inference Latency) 

3x faster
Inference
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Experiments

400K cells per sample

4 GB

20M cells per sample

8 TB

160M cells per sample

31 TB
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Main Results

Without any architecture change, only upgrade training and inference paradigms.

Transolver still achieves the best performance.
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(1) AhmedML Benchmark

(2) DrivAerML Benchmark

Showcase study
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Why Geometry Scaling
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https://github.com/thuml/Neural-Solver-Library

ü 17 different PDE solvers

ü 6 standard benchmarks, PDEBench and 

design tasks 

Welcome to join us and add a new feature 
to this Library!

Code Link:

Neural-Solver-Library
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