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From Transolver to Transolver-3:

Scaling Neural Solvers to Industrial-Scale Geometries

Haixu Wu

MIT CSAIL & THUML
Feb 04, 2026



Real-world Phenomena

Turbulence Atmospheric circulation Stress

How to understand the world?

Images? Videos? World Model?



Real-world Phenomena

Turbulence Atmospheric circulation Stress

Beyond appearances, these phenomena are governed by scientific rules.



Partial Differential Equations

Extensive physics processes can be precisely described as PDEs.

v, Ovy v,
il mels e
ov, avx ov, ov, oP azvx 0%v, 0%,
Pl ot gy T dy Ve az) _$+ﬂ( 0x2 ay T 922 )+ 08
avy avy avy va OP azvy azv,, azvy
o i T gy g oy Mo B o e
ov, ov, dv, v, oP  0d*v, 82vz 0%v,

PGt Ty P ) T TG T Y o ) P
3-D Navier-Stokes equations

ou, ou,
. = , Eyy =—, £_=

6x Gy (’92

u, Oou, 1(0u, ou,
£y = ° , € =T +
82 Ox 2\ 0z 0Oy

3-D Stress-Strain relations




Difficulties in Solving PDEs

Peter Lax Richard Courant
Millennium Prize Problems
» Birch and Swinnerton-Dyer conjecture » Riemann hypothesis
» Hodge conjecture » Yang—Mills existence and mass gap
» Navier-Stokes existence and smoothness » Poincaré conjecture (Solved)

> P versus NP problem

It is hard (usually impossible) to obtain the analytic solution of PDEs



PDE Solvers

Classic Numerical Methods

New Task —>

FEM, Spectral, etc

—> Results

» Recalculation for every new sample

» Each round will incur huge costs

Stable vs. Slow and Discretized

\nsys 55

DASSAULT
SYUSTEME 3,

SIEMENS (.A HEXAGON

Discretized Mesh

Days or even Months




PDE Solvers

Classic Numerical Methods Neural PDE Solvers
New Task —> FEM, Spectral, etc = ——> Results Data 3 Deep Models >  Loss
OO O O
OO OO
: OO OO
» Recalculation for every new sample 1 00 00 ~
New Task o0 OO Results
» Each round will incur huge costs
Stable vs. Slow and Discretized » Training once, inference a lot

> Each round needs several seconds

2 DASSAULT
\nsys p S SHSTEMESs, An efficient / precise surrogate tool
SIEMENS "4 HEXAGON (1deally )




A Valuable Direction

Ansys SimAlI

AI-AUGMENTED SIMULATION

0 minutes

TRADITIONAL SIMULATION

2 hours

https://www.ansys.com/products/simai

Altair® PhysicsAl™ Geometric Deep Learning

Better Design Insights Up to 1000x Faster than Solver Simulation

Altair® physicsAl™

Al simulation enables model predictions
up to 1000x faster

https://altair.com/physicsai



https://www.ansys.com/products/simai
https://altair.com/physicsai

A Booming Direction

ICLR 2024 Workshop on
Al4DifferentialEquations in Science

}‘,. . NEURAL INFORMATION
”‘.i. , PROCESSING SYSTEMS

Foundation Models for Science: Progress, Opportunities, and

Challenges
at NeurlPS 2024
Dec. 15, 2024, Vancouver, Canada
Meeting Room #202 - 204

NeurlPS site:

2024

ICLR 2025
'~ XAlaScience: From
Understanding Model
Behavior to Discovering New

Scientific Knowledge

@ April 27, 2025, co-located with ICLR 2025

ICML 2025

-

Al for Scientific Discovery: From Theory to Practice

Schedule Call for Papers

NeurlPS 2025

2025

70

60

50

40

30

20

10

~— With Physics / PDE
— With World Model

62
40
36
17
13 I

2023 2024 2025

Accepted NeurlPS Papers

10



Towards Practical Neural PDE Solvers

12

(arXiv 2026)

, €.8. boundaries, coefficients, forces
Transolver-3

Diverse PDEs
Unisolver
(ICML 2025)

Transolver++
(ICML 2025)

Large-scale Meshes

Transolver
(ICML 2024)

LSM
(ICML 2023)

Complex Geometries




ICML | 2024

The Forty-first International Conference on Machine Learning

Transolver: A Fast Transformer Solver for PDEs on General Geometries

Haixu Wu'! Huakun Luo' Haowen Wang! Jianmin Wang' Mingsheng Long !

—

d b

Haixu Wu Huakun Luo Haowen Wang Jianmin Wang Mingsheng Long

Code Link: https://github.com/thuml/Transolver



https://github.com/thuml/Transolver

Challenges in Practical Industrial Design

Task: Estimate the drag coefficient of a given shape:
Surrounding Wind & Surface Pressure
1. Large-scale meshes = Huge computation cost
2. Complex and unstructured geometrics - Complex geometric learning

3. Naiver-Stokes equation — Intricate physical correlations

14



Transformer-based PDE Solvers

t

MatMul

1
SoftMax
4
Mask (opt.)
[

Scale

1
oooooooo} MatMul

t 1
Q K

P>

A

Linear

L

Scaled Dot-Product

Attention

b,

-

A

1l

1l

A—[w

V Vv

K

Q

L L L
[ Linear]_][ Linear]][ Linear]J

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

15



Attention Mechanism as Global Integral

Lemma A.1. The canonical attention mechanism in Transformers is a Monte-Carlo approximation of an integral operator.

Proof. Given input function u :  — R, the integral operation G defined on the function space 2 — R is formalized as:

G(u)(g") = /Q w(g", E)ul€)de,

Attention weight as kernel function

where g* € Q C R and &(-, -) denotes the kernel function defined on 2. According to the formalization of attention, we
propose to define the kernel function as follows:

1

w(g",€) = ( /Q exp ((Wqu(g) (Wiu(€))") de’) exp ((Wqu(g")) (Wiu(€)") Wy, ®)
where W o, W, W, € ROXC, Dot-product Similarity
Suppose that there are N discretized mesh points {g1,--- ,gx}, where g; € Q C R%. Approximating the inner-integral

in Eq. (8) by Monte-Carlo, we have:

: , 19l &
/QGXP ((Wq“(§ ) (Wku(ﬁ))T) d§’ ~ % ;::IGXP ((WqU(gi)) (Wku(g))T) . Use the token sequence as an
approximation of the integral

Applying the above equation to Eq. (7) and using the same approximation for the outer-integral, we have:

N exp | (Wqu(g*)) (Wiku(g; ) W, u(g;:
) ~ 5 ng( (&) (Wiu(g:))") T(g)
=T e (Waules) (Wicu(e:)")

(10)

which is the calculation of the attention mechanism with W, Wy, W, as linear layers for queries, keys and values. [

Kovachki et al., Neural Operator: Learning Maps Between Function Spaces, JMLR 2022

16



Transformer-based PDE Solvers

t

MatMul

P g
A ‘:l‘“‘lﬂ",‘."fi'-_"-'

f}'

1
SoftMax
[
Mask (opt.)
[}

Scale

4
oooooooo} MatMul

t ot

Q K

A

i

Vv

Linear

Concat

L

Scaled Dot-Product JL N

Attention

1l L i
[Linear}][iinear]}[iinear]}
¥ ¥ ¥
V K Q

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

1. Quadratic complexity

2. Hard to capture physical correlations among massive points

17



Transformer-based PDE Solvers

A
T T P ey MatMul
: “‘;!“i‘l,;"_'t’i:';. T - Concat
SoftMax p :
1 Scaled Dot-Product J& N
Mask (opt.) Attention <
) 1 L Al
Scale - ~ -
f [ Linear]}[ Linear]_][ Linear]]
¥y
{............ see ........} TMatMufl v Vr
Q K V V K Q

(1) Geometries as point sequences (2) Attention as Monte Carlo Integral

OFormer, Galerkin Transformer, GNOT, etc

How to efficiently capture physical correlations underlying discretized meshes

is the key to “transform” Transformers into practical PDE solvers



A Foundational Idea of Transolver

Previous Work

Being “trapped” to superficial and unwieldy meshes

Discretized Domain Difficulties in Complexity, Geometry, Physics

19



A Foundational Idea of Transolver

Discretized Domain

Physics Domain

Previous Work
Being “trapped” to superficial and unwieldy meshes

Difficulties in Complexity, Geometry, Physics

Transolver
Learning intrinsic physical states underlying
complex and large-scale geometries

Better Efficiency, Geometry, Physics Modeling

20



Learning Physical States

(a) Slices for Darcy, 2D Regular Grid

VN

(d) Slices for Shape-Net Car Surrounding Velocity, 3D Volumes (e) Slices for Shape-Net Car Surface Pressure, 3D Mesh

(b) Slices for Elasticity, 2D Point Cloud

S

Mesh points under similar physical states will be ascribed to the same slice

and then encoded into a physics-aware token.

21



Overview of Transolver

(7 Physics-aware Token

I
— I T /~"N I
| < ) : —> Aggregate & Broadcast
| F | / Linear [
eed- p I
/
: Forward : / & & :
/
: |
| A }/ | Deslice |<\ I
I LayerNorm / I Broadcast |
| | Attention Slice : Attention
< | for Tokens Weights | for Tokens
: Phvsi I Aggregate |
ysics- |
| Attention | A :
I A \\I\ L Heads :
| S inear
LayerNorm N I
I I |
I
I

— e ——— e —— —

M x (N x C)

Transolver applies attention to learned physical states (Physics-Attention)

@ Mesh — physics @ Attention (Integral) @ Physics = Mesh

22



Step 1: Mesh — Physics

|
————F———A |
| < | :
| Feed- Iy linear | i
/
: Forward : / - i :
/

A / (oo |
| } Desm\ |
I LdyerNorm /I Broadcast |
I | Attention Slice :
| R | for Tokens Weights |

Aggregate |

| Physics- | |
. |

: Attention : |
. T Heads I

> Linear |

| LayerNorm : = | | |
| |
_____ — |

(7 Physics-aware Token
—> Aggregate & Broadcast

ﬁ&

g

" M x (N xC)

@ Attentioh
for Tokens

M x (N x C)

@ Mesh — physics

To obtain physics-aware tokens

23



Learning Physics-aware Tokens

(a) Discretized Domain (b) Physics Domain

Slice 1 Slice 2 Slice M

1. Assign each point to slices with weights learned from features

N

1=1

{w;}i, = {Softmax ( Project (x;) ) } N Points to M Slices

N .
S; = {W;;Xi}._q, Softmax for low-entropy slices

24



Learning Physics-aware Tokens

(a) Discretized Domain (b) Physics Domain

Slice 1 Slice 2 Slice M

1. Assign each point to slices 2. Aggregate slices for physics-aware tokens

N N
Zizl Sji Zizl Wi, X4

N — N
D i1 Wi j D im1 Wi,j

Z; =

25



Step 2: Physics Interaction

(7 Physics-aware Token

|
— - - - - — /A |
| < : —> Aggregate & Broadcast
I Feed- Ly Linegp :
/
: Forward : / I ! :
/
| A }/ | Deslice |<\ :
| LayerNorm /| Broadcg | | %
| | Attention Slice : w @ Attention
| < | for Tokens Weights | for Tokens
I Ph . I regae :
ysics-

| Attention | :
| A +d '

I\\ I
| LayerNorm | N I
| |
_____ - | M x (N x C)

@ Attention among physics tokens

Approximate Integral to solve PDEs



Attention among physics tokens

kT
q, k, vV = Linear(z), Z/ — Softmax (q_

Canonical attention among physics tokens

1. Complexity: O(N4C) - O(M?C)
2. Capture interactions among physics states

3. Theorem: Attention as learnable integral operator

)v
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Step 3: Physics — Mesh

(7 Physics-aware Token

— - - I |
< —> Aggregate & Broadcast
Feed- // Linef’p
Forward / £ H

| |

| |

| |

I | /

| A }/ | Deslice

| LayerNorm /| 1 Broadcast \
| @5 PR

|

|
|
|
|
|

Attent Slice
for Tokens Weights
K Aggregate
Phys'?s' Slice
Attention

|
|
|
| |
A T
\I\ g Linear Hea
LayerNorm |
-—

M
(3) Physics — Mesh x| = Z W, 2
Project physics information back to mesh =1 Slice weight

28



Theoretical Understanding of Transolver

1. Corollary of Attention is a learnable integral
Since attention mechanism is applied to tokens encoded from slices, the step 2

(attention part of Transolver) is a learnable integral for the physics domain

Is Physics-Attention still an input domain integral?

G(u)(g") = / w(g", €)u(€)de

Q



Theoretical Understanding of Transolver

G(u)(g) = /Q k(g, &)u(€)dé Physics-Attention is still an input domain integral.

ms (8, &) us (&) dg ™" (&) (Kms (-, +) : Q x Qg — R€*Y is a kernel function)

I
59\
N

ms ga ) ( )|det(V§g 1( s))|d€s

|
PO
=

Wg ¢ ks (&s, &) d
/ (fQ a.¢ifiss (€, €,) 46, ) us (&) | det(Ve g ' (&,))]dE, (Kms is a linear combination of x¢s with weights w )
fQ wg,¢; A€
— [wag [ mel€h8) () |det(Veg(€))IdEdE (Suppose that | wg grdel = 1)
Qs \-\/-/ Q N— —r W_/ Q

DeSlice Attention among slice tokens Slice token

T N
exp ((Waua (&) (Wicts(€,))" /7) w. <zp=1wp,tu<gp>> (Lemma A1

j=1 J i—1 Zﬁil exp ((uns(§ )) (Wkus( )) /7‘) R Z;vzl Wt
—_—

- -’

Eq. (4) Ea (3) Eq. (2)

>4

:f <~ __ exp(q;k] /7)

Wi,j ty

j=1 t=1 Zﬁil exp(q;k; /7)

All the designs can be directly derived.
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Experiments

GEOMETRY BENCHMARKS #DI1M #MESH
POINT CLOUD ELASTICITY 2D 972
STRUCTURED PLASTICITY 2D+TIME | 3,131
MESH AIRFOIL 2D 11,271
PIPE 2D 16,641
NAVIER-STOKES | 2D+TIME | 4,096
REGULAR GRID DARCY D 7225
UNSTRUCTURED | SHAPE-NET CAR 3D 32,186
MESH AIRFRANS 2D 32,000

Six standard benchmarks, two practical design tasks

(a) Shape-Net Car

More than 20 baselines

(b) AirfRANS

Wind

111ttt
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Standard PDE-Solving Benchmarks

| POINT CLOUD

STRUCTURED MESH

REGULAR GRID

MODEL | ELASTICITY PLASTICITY  AIRFOIL PIPE NAVIER—-STOKES  DARCY
FNO (L1ET AL., 2021) / / / / 0.1556 0.0108
WMT (GUPTA ET AL., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
U-FNO (WEN ET AL., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
GEO-FNO (LIET AL., 2022) 0.0229 0.0074 0.0138 0.0067 0.1556 0.0108
U-NO (RAHMAN ET AL., 2023) 0.0258 0.0034 0.0078 0.0100 0.1713 0.0113
F-FNO (TRAN ET AL., 2023) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LSM (WU ET AL., 2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
GALERKIN (CAO0, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
HT-NET (LIU ET AL., 2022) / 0.0333 0.0065 0.0059 0.1847 0.0079
OFORMER (LI ET AL., 2023C) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
GNOT (HAO ET AL., 2023) 0.0086 0.0336 0.0076 0.0047 0.1380 0.0105
FACTFORMER (LI ET AL., 2023D) / 0.0312 0.0071 0.0060 0.1214 0.0109
ONO (XIAO ET AL., 2024) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
TRANSOLVER (OURS) 0.0064 0.0012 0.0053 0.0033 0.0900 0.0057
RELATIVE PROMOTION 25.6% 29.4% 10.2% 29.7% 24.7% 12.3%

Transolver achieves 22% error reduction over the second-best model
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Car and Airfoil Design

Model capability in “ranking” designs

Shape-Net Car AirfRANS 9 ( R ) R
- —=—1 =2 ([ 1o (7 7©) e+ [ 7 Tee)
B Volume | Surf ] CDi€ pp T Volume] Surf] C, 1™ p,1 v2A \Jog o0
Simple MLP 0.0512 0.1304 0.0307 0.9496 0.0081 0.0200 0.2108 0.9932 Transolver 3D-GeoCA GNOT
GraphSAGE[!*7] 0.0461 0.1050 0.0270 0.9695 0.0087 0.0184 0.1476 0.9964
PointNet 1% 0.0494 0.1104 0.0298 0.9583 0.0253 0.0996 0.1973 0.9919

Graph U-Net 2% 0.0471 0.1102 0.0226 0.9725 0.0076 0.0144 0.1677 0.9949
MeshGraphNet'"®! | 0.0354 0.0781 0.0168 0.9840 0.0214 0.0387 0.2252 0.9945

GNO™ 0.0383  0.0815 0.0172 0.9834 0.0269 0.0405 02016 09938 5\ rr0unding Velocity Error Map
Galerkin %! 0.0339 0.0878 0.0179 0.9764 0.0074 0.0159 0.2336 0.9951
19 Transolver 3D-GeoCA

geo-FNO ¥ 0.1670 0.2378 0.0664 0.8280 0.0361 0.0301 0.6161 0.9257

GNOT®] 0.0329 0.0798 0.0178 0.9833 0.0049 0.0152 0.1992 0.9942

GINO ! 0.0386 0.0810 0.0184 0.9826 0.0297 0.0482 0.1821 0.9958

3AN-GeaC A [193] 00319 00779 00159 09842 / / / /

Transolver 0.0207 0.0745 0.0103 0.9935 0.0037 0.0142 0.1030 0.9978

Surface Pressure Error Map




Efficiency

400

Running Time (s/epoch)

w

o

o
!

N

o

o
1

100 -

Running Time GPU Memory
_______ | 101 e e s _l
| — ONO | | __ ONO |
: —— Galerkin | : —— Galerkin |
| ! =1 | |
[ —— OFormer I Q_ (I OFormer |
| l ~ | I
| I 6 61 | !
_______ 2 e
o
= n
=
Q)
2 /
[N— ——
1024 2048 4096 8192 16384 32768 1024 2048 4096 8192 16384 32768

Input Resolution Input Resolution

Favorable efficiency and performance balance

Transolver is faster than linear Transformers in large-scale meshes.
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Physical States Visualization

AWRDAND
VVVRVIRYDDS
VRV
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Relative L2

Relative L2

Pursuing PDE Foundation Models: Scalability

(a) Resolution

(b) Data

3L .
85°103%1412 211

Input resolution

31 . . .
1000 2000 3000 4000
Number of training samples

5000

1. Resolution: Consistent performance at varied scales

2. Data: Benefiting from larger training data

3. Parameter: Benefiting from more parameters

«° (a) Elasticity . (b) Plasticity w0 lc) Airfoil B (d) Pipe . (€) Navier-Stokes o (f) Darcy
X X
3 4 10
3.5
2 9 4
3
1 8 A
25
8 16 24 32 40 8 16 24 32 40 8 16 24 32 40 8 16 24 32 40 8 16 24 32 40 8 16 24 32 40

Number of model Layers

Number of model Layers

Number of model Layers

Number of model Layers

Number of model Layers

Number of model Layers
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Pursuing PDE Foundation Models: Generalization

OOD REYNOLDS | OOD ANGLES
VIODELS Crl  put | Cud prt
SIMPLE MLP 0.6205 0.9578 |0.4128 0.9572
GRAPHSAGE (2017) 0.4333 0.9707 |0.2538 0.9894
POINTNET (2017) 0.3836 0.9806 |0.4425 0.9784
GRAPH U-NET (2019) [0.4664 0.9645 [0.3756 0.9816
MESHGRAPHNET (2021) | 1.7718 0.7631 [0.6525 0.8927
GNO (2020A) 0.4408 0.9878 |0.3038 0.9884
GALERKIN (2021) 0.4615 0.9826 |0.3814 0.9821
GNOT (2023) 0.3268 0.9865 [0.3497 0.9868
GINO (2023A) 0.4180 0.9645 |0.2583 0.9923
TRANSOLVER (OURS) [0.2996 0.9896 [0.1500 0.9950

Re ~10"-~10" @_
=
=
NS
o ‘V

Hmwmmdﬁn

5
Re >~ 10

Transolver still performs best (Spearman’s correlation ~ 99%) in OOD settings
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Open-Source Code

#¥ Transolver public < EditPins v & Watch 6 ~ % Fork 24 v Starred 181 =

# main v ¥ 1Branch © 0 Tags Q Gotofile t Add file ~ <> Code ~ About e

About code release of "Transolver: A

[ wuhaixu2016 Merge pull request #17 from Dominik-RISC/fix-exp-elas-epochs eB 8d4abae - yesterday YY) 28 Commits Fast Transformer Solver for PDEs on
General Geometries", ICML 2024
Airfoil-Design-AirfRANS Update README.md 9 months ago Spotlight.
https://arxiv.org/abs/2402.02366
Car-Design-ShapeNetCar Update main.py 2 weeks ago ps:/}: g/abs/
0 Readme
PDE-Solving-StandardBenchmark Fix: undefined 'epochs' variable in exp_elas.py last week
&8 MIT license
pic init code last year A~ Activity
[ .gitignore Initial commit last year & Custom properties
¥¢ 181 stars
Y LICENSE Initial commit last year ® 6 watching
[ Physics_Attention.py rename last year % 24 forks
Report repository
[ README.md Update README.md 2 months ago
Releases
[0 README &8 MIT license 7 =

No releases published
Create a new release

Transolver (ICML 2024 Spotlight) Packages

No packages published
Publish your first package

»News (2025.04) We have released Neural-Solver-Library as a simple and neat code base for PDE solving. It
contains 17 well-reproduced neural solvers. Welcome to try this library and join the research in solving PDEs.

» News (2025.02) We present an upgraded version of Transolver, named Transolver++, which can handle million- Contributors 3

scale geometries in one GPU with more accurate results. -
‘ wuhaixu2016

»News (2024.10) Transolver has been integrated into NVIDIA modulus.

(= wangguan1995 WG

Code Link: https://qgithub.com/thuml/Transolver Code for Transolver



https://github.com/thuml/Transolver

NVIDIA PhysicsNeMo

<ANVIDIA. NVIDIA PhysicsNeMo Framework 25.08 ~

LOYyINy anu Crieckpuirnting

Model Architectures

PhysicsNeMo Distributed v
Physics-guided

Performance v
Data Curation

Model Evaluation and Inference

Symbolic Abstractions v

Examples

PhysicsNeMo Examples Catalog

Library Documentation

PhysicsNeMo v
PhysicsNeMo Sym ™
PhysicsNeMo Curator (4
PhysicsNeMo CFD &2

Earth2Studio 3

Resources

Customizing PhysicsNeMo

Dalacacan

https://docs.nvidia.

New features/Highlights v25.08

Features and Enhancements

¢ GNNSs: Support for Pytorch Geometric and MeshGraphNet performance optimizations, between 1.5x

to 2x speedup with float16, bfloat16 for meshes > 200k nodes.

¢ Transformers: Transolver performance optimization ]

¢ DoMINO fine-tuning.

¢ Updated DoMINO training recipe:

o Physics informed DoMINO

o Configure as many global parameters as needed

¢ Error quantification for external aerodynamics

¢ Data curation enhancements

¢ Mixture of experts for external aerodynamics.

Recipes and Examples

* Reference workflow for design sensitivity analysis using Al surrogates.

¢ Denoising Pre-trained Operator Transformer samples.

¢ FWI sample

s physicsnemo

“The Transolver model
is a promising,
transformer-based
model that produces
high-quality
predictions for CFD
surrogate simulations.”

com/physicsnemo/25.08/physicsnemo/examples/cfd/external aerodynamics/transolver/README.html
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https://docs.nvidia.com/physicsnemo/25.08/physicsnemo/examples/cfd/external_aerodynamics/transolver/README.html

NVIDIA PhysicsNeMo

Feed-
Forward

1

LayerNorm

q)

Physics-
Attention

1

LayerNorm

Deformed FE Mesh

1

Linear

i

Deslice

Attention for
Tokens

Aggregate

Slice

2

Broadcast

Slice
Weight

Z

Linear

1

Heads

e

Thickness (mem) on Pred Deformed Ms

Point Cloud

Nabian et al., Automotive Crash Dynamics Modeling Accelerated with Machine Learning, arXiv 2025
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|
"I~ —7/nN '
| < : —> Aggregate & Broadcast
I Feed : // | Linear l :
: Forward | / d = :
/
I A }/ | Deslice |<\ :
I LayerNorm / I Broadcast |
I I Attention Slice : Attention
| <—F I for Tokens Weights [ for Tokens
Aggregate |
| Physics- | I
| Attention | A :
I A +d |
\I\ - Linear Heads| |
I LayerNorm N I
I I |
————— b c— — — —r I
|

“Magic Design” in Transolver

£/ Physics-aware Token

Z'i:]. W”HJ Z’L:]. Wz’] ’ j=1
Why adopt the global weighted sum? Why reuse slice weights?

Support Transolver++ Support Transolver-3



ICML | 2025

The Forty-second International Conference on Machine Learning

Transolver++: An Accurate Neural Solver for PDEs on Million-Scale Geometries

Huakun Luo*! Haixu Wu”! Hang Zhou' Lanxiang Xing' Yichen Di' Jianmin Wang' Mingsheng Long !

A1

Huakun Luo Haixu Wu Hang Zhou Lanxiang Xing Yichen Di Jianmin Wang Mingsheng Long
=] (=]
Code Link: https://qgithub.com/thuml/Transolver plus '

.
-

[=]#



https://github.com/thuml/Transolver_plus

Extremely Large Geometries

2.5M Mesh Points

32k Mesh Points
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10-100x Larger than Previous Benchmarks

DrivAernet++

AirCraft

10-100x

ShapeNetCar
AirfRANS

TAZaNVAVAVAVA'l

L]

Pipe y
L] L]

Airfoil -

Darcy - e
NS2D
Plasticity
Elasticity 1]

ANAVAV/
w;vm‘é‘,"w?;
=\ IVAVANIA
VORIV

o7

[ Transolver++(Ours)
[ 1 Transolver
[ 1 Others

3k 16k 32k 300k 700k 2.5M
#Meshes
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Transolver++: Enable PDE Solving in Million-Scale Geometries

O
o

I
o

GPU Memory Usage (GB)

W
o

N
o

o

mofe= Transolver++(Ours)
m@= Transolver
GNOT
m@= Galerkin
m@= VanillaAttention

5k10k 50k

100k 200k 300k 400k 500k 600k 700k M
#Points

48



Difficulties on Applicability

Lift

]

A

Large Geometrics In real-world applications

1. More complex geometrics with plenty of details
2. Deep models are expected to be Scalable

3. Models are expected to be more accurate

ind
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Revisiting Transolver

— - - = - /"
<

7 Physics-aware Token
—> Aggregate & Broadcast

|
|
| o |
| | / Linear |
| Feed- | p I
| Forward | / L B :
/
: |
| A }/ | Deslice I(\ |
I LayerNorm / I Broadcast |
| | Attention Slice : Attention
| < | for Tokens Weights | for Tokens
|
| Physics- | I A
| Attention | A :
| |
|
|

A hi
\I\ < Linear Heads
LayerNorm |

— e —— e ——— — )

M x (N x C) M x (N x C)

Transolver applies attention to learned physical states

@ Mesh — physics @ Physics-Attention @ Physics = Mesh



Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states

- Degenerate in large-scale geometries

Transolver

- Improved physics learning

Transolver++

(b) Slice Weights Visualization

ol



Challenges within Transolver in Million-Scale Geometries

1. Homogeneous physical states 2. Efficiency Bottleneck

Transolver

- Even a single intermediate representation
of one million mesh points will consume
2GB of GPU memory

- Previous upper bound of geometry scale is
600k on a single GPU supported by
Transolver

Transolver++

(b) Slice Weights Visualization
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Upgrade 1: Physics-Attention with Eidetic States

Architectural Design

A ____T____\

P
Heads] “=- _¢T_

) Geometry
Representations

LayerNorm

\.

r w
s (=
| [ Linear ] |
( A 7 Slice Geometry
Feed-Forward ) | £ | Weights Representations
' : ‘ | Desli I $---1
LayerNorm 1 /5 eilce | _r_ N :
L J ice |
7 1| [Weights Broadcast | I ) I
o(+ |~ : | .| Rep-Slice | |1
‘\’/ | [Aﬂenhon among ] J’/ L '
s : . |
Physics-Attention | Eidetic States 1 : —
with I AAggregc:te y; | I | AdaT
- I a-Temp
- At dlisiz A _ | Eidetic Slice I L -1 '
X ~ < ] 7 I\ '
e | | I
)
|

A [ Linear ]

. S — o — — — — —




Upgrade 1: Physics-Attention with Eidetic States

Local Adaptive Mechanism

Slow-changing
region

Ada-Temp: 7 = {Tz'}f\;l = {710 + Linear(xq;)},fil ;

—
-

Transolver

00 A{Transolver++

slice

1200 * Utilize the local properties of each mesh point

600 * Learns the uncertainty of each points

* Adaptively change the temperature of each point

0.10
Transolver++

Transolver . =
7’ .
_ 2 Fast-changing

’ Region

0.08
0.06
0.04
0.02

slice

0.00

Li —log(—1

. . . Rep—Slice(x, ’T) = Softmax lnear(x) Og( Og E) ,
Slice reparamEterlzatlon T

4)



Upgrade 2: Parallelism Framework

Transolver is under a natively parallel formulation.

Z— (1) (1)65 @ZN#gpu (#gp) (#gpu)

Z 'l (1) @ @ ZN#gPu (#gPU)

Additivity of physical states: g =

(a) Comparison with :Ct:;ﬁr parallel methods GPU #GPU

[ #GPU-1 ) [ #GPUT ) [ #GPU-1 ) Equivalent result

L L46M GPU 1 iR $ GPUT «_@ - ¢GPU\1 }ﬁ As:cumulate
>

Trcmsformer N TFUETFOLmer . Pl B, Tran;lo|v:r++ mUItl‘GPU resu|tS
Block Ly oc L oc ot
1 | A 1| 1 P / /[ = 5
Transformer Transformer| | (ol Transolver++| | /] Compute physical states
YK,V Ty Block N .
Block Block v o J in each GPU
1| = e [:'%
e transferred —— transferred TronslolvEr++ . transferred “
Block ' 2 Block Bloc _ . :
Ll ) -on? Phoc (-0 / 0=0(K) Split the mesh into
ring attention DeepSpeed-Ulysses Transolver++ multiple GPUs
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Upgrade 2: Parallelism Framework

Overhead Analysis Further SpeedUp

Algorithm 1 Parallel Physics-Attention with Eidetic States

Input: Input features x(*) € RV+XC on the k-th GPU.
Output: Updated output features x’(F) € RNsxC,

(b) Scalability of Transferred Package

=e= Transolver++(QOurs) // drop f to save 50% memory.
2.0 DeepSpeed-Ulysses Computew, x(k) Project(x(k))
ring attention Compute 7) + 75 + Ada-Temp(x(¥))

—
()]

Compute weights w(*) < Rep-Slice(x(*), 7(F))

Compute weights norm wr(ll(fr)m < Z;N=k1 wgk )
Reduce slice norm wpm AllReduce(WI(l’;r)m) O(M)

o

Total Transferred Package (GB)

o (k)T 5 (k) gl
0.5 0.25MB Compute eidetic states s(¥) — W w’zomw
/— . \ Reduce eidetic states s < AllReduce(s(*)) O(MC)
0.0 ¢ Update eidetic states s’ < Attention(s)
10k 100k 200k 300k 400k 500k 600k 700k ™ Deslice back to x/(k) « Deslice(s/, w(k))

#mesh points Return x'(¥)
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Industrial-level Applications: Car Design

Ground Truth Transolver++ Prediction Transolver Prediction GNOT Prediction

' 500

-600

DrivAerNet++ Surface

Error Map

Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 3.6%; Relative Field Error = 11%.
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Industrial-level Applications: AirCraft Design

Ground Truth Transolver++ Prediction Transolver Prediction GNOT Prediction
AirCraft
Error Map

Transolver++ achieves over 20% error reduction than other models.

Relative Drag Coefficient Error = 1.4%; Relative Field Error = 6.4%.
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Back to Transolver’s Original Design!

Transolver-3: Scaling Up Transformer Solvers to Industrial-Scale Geometries

Hang Zhou'! Haixu Wu! Haonan Shangguan' Yuezhou Ma! Huikun Weng' Jianmin Wang !
Mingsheng Long !

Hang Zhou Haixu Wu Haonan ShangGuan Yuezhou Ma Huikun Weng Jianmin Wang Mingsheng Long



Scale to Over 100-Million-Cell Geometries

|:| Num of Surface cells DrivAerML ~160 M

— — — —_—— " - :I Num of Volume cells
| | DrivAerNet++
| | | // Linear ]
| Feed- W, o

Forward / - :
| | / ’ ShapeNet Car
| A . }/ | Deslice ]\
| LayerNorm /| T Broadcast

/ ( 5 :
Attention Slice
: (i)(—/ﬁ : L for Tokens ] Weights
] T Aggregate
| Physics- | ™ Slice
| Attention | , x A
| A \\l\ f L 4 Heads
1>~ inear ]
| LayerNorm N . X
| — | | sk ~30K
— c— e— — e —— — — —r o5% o
Transolver Transolver++ Transolver-3
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Detailed Complexity Analysis

A

A
[ Linear ]
AMA
Deslice e
! Broadcast
“ . ) .
Attention Slice
for Tokens Weights
\_ J
1 Aggregate
Slice
A a
7 "
[ Linear ] Heads

Table 1. Complexity Analysis of Original Physics-Attention.

Operation Time Complexity Space Complexity
Linearl(x) O(NC?) O(NC)
Softmax(Linear2(x)) O(NCM) O(NM) Slice
(Wd_l)Txproj O(NMC) O(MC)

Attention(s) O(M2C) O(M? +MC) ) aun
ws' O(NMC) O(NC) .
Linear3(ws') O(NC2) O(NC) $ Deslice
N-Related Terms 5 4

N (mesh size) >> C (hidden channels) >= M (physical states)
we should care about all the terms related to N.
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Faster Slice

Slice Weights

N,

w: NxM \
Sl oo

: 1 P ! 1
! Slice +— _)[ Ah‘ention]-’ | DeSlice H Linear 3 —

w: NX
Linearl Matmul T
XWl inear1 waproj > w (XwLinearl)
x: NxC xproj:NXC EEE—
Switch
~d -
v
Linear2 Faster Slice
Softmax
4
Matmul Linearl T
—> )
WTX Wiinear1Sraw (W X)WLlnearl
x: NXC Sraw: MXC —

s': MxC ""7‘" ——— '|’" Xout: NXC

v Time Complexity: (?(NC2 + NMC)
v’ Storage Complexity: O(NM + NC)

v Time Complexity: (?(MC2 + NMC)
v’ Storage Complexity: O(NM + MC)
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Faster DeSlice

Slice Weights

N,

w: NxM \
e e

I
——  Slice — —)[ Attention ]—> | DeSlice l—| Linear 3 l—)
| |
x: NXC 1 " s: MXC s': MXC -'-;7f-' ----- I- Xout: NXC
|
| DeSli
T ﬂ Slice : eSlice
Softmax ,
w: NXM I w: NXM
| Linearl Matmul : Matmul Linear3 ,
XWLinear1 WX o _>| ws' X' Weinear| | (WS )WLinearS
x: NxC Xproj: NXC | s'MxC x:NxC
|
Switch I Switch
~d L | ~d -
N . [ T~ .
Faster Slice : Faster Deslice
| |i
: w: NxM
Linearl | Linear3 Matmul W(S’W _ )
WeLinear1Sraw | S'Wiinear3 WSout _> Linear3
x: NxC Sraw: MXC : s':MxC s:)ut:MXC
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Training Scaling Framework

(a) Geometry Slice Tiling, reduce peaky memory usage (b) Amortized Training
T I — O <
T ; Optimized DeSlice : 1
— | o o e e e e e e ________________________,I
s ¢ £ | l
k Attention ] : [ Feed-Forward ] |
)
_g T Sequenhally Accumulate Buffer T : [ LayerNorm ] :
5 ® | t |
[ foa B (s | N5
_L% \ @ d(t): MXMJ : ( Opﬁmized ) |
= - I A o __ I : | Physics Attention | ||
s | i . | , 7 |
E: | Optimized Slice | / e |
B A= === e IS ‘ £ |
T~ Sequential Compute > L ____________ J
TE’ [ Tile T (x1) ] [ Tile 2 (x4) | J Tile T (x7) ] { Sampling one subset per-lteration }
Z5 —— ’ Subset #1  Subset #2 Subset #K
Input Tensor

- x: NXC Y, M Original Mesh Dy
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Training Scaling Framework

(a) Geometry Slice Tiling, reduce peaky memory usage

N

Normal

Gradient Checkpointing
11

Normal

[ Attention

Inside Transolver++, trading computation time for memory

>

T T =4
s = Linearl (Z((w(t))Tx(t))> (Z d(t)) :
t=1 t=1
Sequential Compute
[ Tile 1 (x4) ] [ Tile 2 (x4) ‘ . J Tile T (x7) ]

—~_ Y

Input Tensor

x: NXC

(b) Amortized Training

TRy

I

| [ Feed-Forward ]
| )
I
|
|

[ LayerNorm ]

)

Optimized
Physics Attention |

|
I R
1| LayerNorm
I N

p—.

_____________ J
{ Sampling one subset per:lteration }
Subset #1  Subset #2 Subset #K

/

oy
M Original Mesh Dy
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Inference Scaling Framework

Amortized training separates the PDE solving process into several subsets, successfully

reducing memory, but it cannot get the correct physical state.
Accumulate

Among subsets
(a) Physical State Caching
Cache States ( ) ) y ] [ o

Inference /_) Subset #K
MeSh/_ ) Transolver-3 Layer i

ARE 1 State 1 Sta e?2 State M )

L Subset #2 Layer 1

Subset #1

Layer L

LayerNorm

LayerNorm
FeedForward

—®
v

Physics Attention

JRTLT
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Inference Scaling Framework

Inference on the arbitrary position (in PINN style).

w = Softmax (Linearz(x(l))) Physical State m m m
O _ D Cache
X — W'’/S — —

out out | S

Cached physical states

Newly estimated x € R1XCin -
slice weights

Layer 1 <
Slice weights
W € R].XM




|
"I~ —7/nN '
| < : —> Aggregate & Broadcast
I Feed : // | Linear l :
: Forward | / d = :
/
I A }/ | Deslice |<\ :
I LayerNorm / I Broadcast |
I I Attention Slice : Attention
| <—F I for Tokens Weights [ for Tokens
Aggregate |
| Physics- | I
| Attention | A :
I A +d |
\I\ - Linear Heads| |
I LayerNorm N I
I I |
————— b c— — — —r I
|

“Magic Design” in Transolver

£/ Physics-aware Token

Z'i:]. W”HJ Z’L:]. Wz’] ’ j=1
Why adopt the global weighted sum? Why reuse slice weights?

Support Transolver++ Support Transolver-3



Efficiency Analysis (Geometry Scaling)

O S
o

o 30

(¢

-

> 20

= —4—Transolver

o —o—Transolver++

= 10 Transolver-3 w/o Tiling
2 —+—Transolver-3 with Tiling
O o

10k 50k 100k 500k M 1.5M 2M 2.5M  2.9M
Number of Cells

With slice tiling, Transolver-3 can process around 3M points on a single GPU.

5x larger than vanilla Transolver, 2x larger than Transolver++
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Efficiency Analysis (Inference Latency)

GFLOPS

700
1200 |
s=fl== Transolver 600 wefl== Transolver A
1000 | e Transolver-3 500 wefe== Transolver-3
Ty 3x faster
800 - £
= 400" Inference
i (@
ce0 & 300
400 3
200
200 100
0 -
10K 40K 160K 640K 2.5M 10K 40K 160K 640K 2.5M
Num of Mesh Cells Num of Mesh Cells

(a) Time Complexity (b) Practical Efficiency
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Experiments

é i; ;\\
‘<\ Wind

\$\

X \y
‘<<\ Wind ‘<\ Wind
(a) NASA-CRM (b) AhmedML (c) DrivAerML

400K cells per sample 20M cells per sample 160M cells per sample
4 GB 8TB 31TB
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Main Results

Table 4. Relative L2 errors (in %) of surface pressure ps and skin friction coefficient C'y on the NASA-CRM dataset, and surface pressure
Ps, volume velocity w, wall shear stress 7 and volume pressure p, on the AhmedML and DrivAerML datasets.

MODELS | NASA-CRM AHMEDML DRIVAERML
| Ds C; Ps u T Do Ps u T Do

GRAPH U-NET" 15.85 15.61 6.46 4.15 7.29 5.18 16.13 17.98 27.84 20.51
GINO* 12.39 11.51 7.90 6.23 8.18 8.80 13.03 40.58 21.71 44.90
GAOT* 30.38 59.79 8.02 7.43 9.92 10.47 34.00 57.18 61.00 56.90
UPT 12.78 23.78 4.25 2.73 5.80 3.10 7.44 8.74 12.93 10.05
AB-UPT 9.77 6.43 3.97 1.94 5.60 2.07 3.82 5.93 7.29 6.08
TRANSOLVER™ 9.61 7.04 3.20 1.81 4.85 2.41 4.81 6.78 8.95 7.74
TRANSOLVER++" 9.51 6.95 3.47 1.78 5.06 2.35 4.12 4.70 6.42 6.70
TRANSOLVER-3 | 8.71 5.85 2.96 1.60 4.81 2.16 3.71 4.14 5.85 5.72

Without any architecture change, only upgrade training and inference paradigms.
Transolver still achieves the best performance.
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Ground Truth

DrivAerML pq
Error Maps

DrivAerML T
Error Maps

Transolver-3 Prediction Transolver++ Prediction AB-UPT Prediction

TCe.T

1.13

-0.44

-1.5
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Showcase study

(1) AhmedML Benchmark

Ground Truth Transolver-3 Prediction Transolver++ Prediction AB-UPT Prediction
L W (A I

(2) DrivAerML Benchmark

Ground Truth Transolver-3 Prediction Transolver++ Prediction AB-UPT Prediction

50

15

-20
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Why Geometry Scaling

—e—Volume pressure 0.1 —e— Drag |C7"** — ¢ |
0.040- —#—Volume velocity . e Lift |C7red B C:efl
o
. -
© 0.038 / L
L D
N =
5 0.036 2
o 9
£ <0.01
c
_d) 0.034' O ]
o ®
=
0.032-
400K 2M  8M  32M  160M 10K 100K M 10M
Num of Cells Num of Cells

(a) Scaling of Input Resolution (b) Scaling of Evaluation Resolution
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Neural-Solver-Library

(" Neural-Solver-Library ' public

¥ main ~

w syx11237744 update pipe script

[ R e B o D o B

> EditPins ~

¥ 1Branch © 0 Tags Q Gotofile t

148c2eb - 3 weeks ago

data_provider fix pdebench_steady_darcy data_loader

exp update drag calculation

layers added the extra layernorm for Galerkin

models added the extra layernorm for Galerkin

pic update intro

scripts update pipe script

utils Update visual.py

.gitignore feat(visual): implement 1D and 3D structured data visualiz...
LICENSE Initial commit

README.md Update README.md

requirements.txt feat(visual): implement 1D and 3D structured data visualiz...
run.py fix 1d MWT

README 38 MIT license

< Neural-Solver-Library (NeuralSolver)

Code Link:

& Watch 5 ~

Add file ~ <> Code ~

& 51 Commits

2 months ago
last month

2 months ago
2 months ago
3 months ago
3 weeks ago
2 months ago
2 months ago
4 months ago
2 months ago
2 months ago

2 months ago

7

% Fork 13 - Starred 153

About

A Library for Advanced Neural PDE
Solvers.

deep-learning pde-solver

neural-operators

Readme

MIT license
Activity

Custom properties
153 stars

5 watching

< O [ ¢ B

13 forks

Report repository

Releases

No releases published
Create a new release
Packages

No packages published

Publish your first package

Contributors 4

‘ | wuhaixu2016

_g syx11237744 sunyuanx22

https://qgithub.com/thuml/Neural-Solver-Library

-

v’ 17 different PDE solvers
v 6 standard benchmarks, PDEBench and

design tasks

Incoming

Wind

Task 1: Standard

Task 2: PDEBench Task 3: ShapeNet Car

Welcome to join us and add a new feature
to this Library!
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https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
https://github.com/thuml/Neural-Solver-Library
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