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Time Series In Real World

Energy Traffic Economic Weather Disease
Consumption Flow Changes Variations Propagation

Time



Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning

>
Past Observations Future Time Series



Time Series Analysis

[Forecasting]

Weather forecasting, Energy/Traffic planning
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Time Series Analysis [Anomaly Detection]

Industrial Maintenance

Time



Time Series Analysis [Anomaly Detection]

Industrial Maintenance

Time

[Classification]

Action recognition, Heartbeat diagnosis

Time



In Pursing Foundation Models
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Bommasani et al. On the Opportunities and Risks of Foundation Models. Arxiv 2021.



In Pursing Foundation Models

Training

Model

Data

[Proper Training Strategy]

[Task-Universal Backbone]

[High-quality Large-scale Data]
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Published as a conference paper at ICLR 2023
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Foundation Models in CV and NLP

Universal backbone with

task-specific heads for different tasks.
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Differences among Image, Language, Time Series

TimesNet is for time series analysis.



Differences among Image, Language, Time Series

| Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.
% WIKIPEDIA

The Free Encyclopedia




Differences among Image, Language, Time Series

| Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.
% WIKIPEDIA

The Free Encyclopedia

i - Each time point only saves some scalars.



Temporal Variations of Time Series

More information of time series is in temporal variations,

such as continuity, periodicity, trend and etc.
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Multi-periodicity View of Time Series

1o *t Period 3
1o *t Period 2!
At Period 1i |

Value

v Traffic: daily and weekly

| v' Weather: daily and yearly

>
Time

Real-world time series usually present multi-periodicity.

Multiple periods overlap and interact with each other.



Intraperiod- and Interperiod-variations

v" Intraperiod: adjacent area, short-term variations

v" Interperiod: same phase in adjacent periods, long-term variations

Non-periodic cases, the variations will be dominated by intraperiod-variations.



Overall design of TimesNet
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A modular architecture to disentangle intricate temporal pattems



Overall design of TimesNet
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(1) Multi-periodicity

A modular architecture to disentangle intricate temporal patterns



Overall design of TimesNet

Interperiod-variation
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Unify intraperiod- and interperiod-variations in 2D space by reshape



Temporal 2D-variation: A Case Study
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Temporal 2D-variation: A Case Study
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Temporal 2D-variation

Capture Temporal 2D-variations
by 2D Kernels

Interperiod-variation

. A Case Study

With temporal 2D-variations, we can
v Unify intraperiod- interperiod-variations

v’ Learn representations by 2D kernels



Overall design of TimesNet
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TimesNet
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TimesNet consists of residual-connected TimesBlocks.
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Experiment: Overall

Tasks Benchmarks
Long-term: ETT (4 subsets), Electricity,
Forecasting Traffic, Weather, Exchange, ILI

Short-term: M4 (6 subsets)

Imputation ETT (4 subsets), Electricity, Weather

Classification UEA (10 subsets)

Anomaly Detection | SMD, MSL, SMAP, SWaT, PSM

v Five mainstream time series analysis tasks.

v 36 datasets, 81 settings, 20+ baselines



Experiment: Overall

Long-term Forecasting

(MSE)

Classification
(Accuracy)

Shortterm Forecasting

(SMAPE)

11.

=== TimesNet (Ours)
e ETSformer (2022)
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e DLinear (2022)
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FEDformer (2022)

Autoformer (2021)

86.00 0.05
Anomaly Detection Imputation

(F1-Score) (MSE)

Informer (2021)

Reformer (2020)

TimesNet achieves state-of-the-art in all five tasks (2023/02)



F1-Score

Model Generality
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Time Series Library (TSli
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Time Series Library (TSlib)

Languages
TSlib is an open-source library for deep learning researchers, especially for deep time series analysis.

Code is available at https://github.com/thuml/Time-Series-Library with 3000+ stars



https://github.com/thuml/Time-Series-Library

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

SImMMTM: A Simple Pre-Training Framework for
Masked Time-Series Modeling

Jiaxiang Dong; Haixu Wu; Haoran Zhang, Li Zhang, Jianmin Wang, Mingsheng Long™
School of Software, BNRist, Tsinghua University, China
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Value

Time Series Pre-training
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Large-scale time series data Diversified time series analysis tasks

(1) Use the model as the carrier of knowledge.

(2) Learn transferable temporal representations.



Masked Modeling in NLP

Random mask a portion of words.
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Pre-training Fine-Tuning

Devlin et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ACL 2019.



Masked Modeling in GV
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Random mask a portion of patches.

He et al. Masked Autoencoders Are Scalable Vision Learners. CVPR 2022.



Differences among Image, Language, Time Series

| Analysis is the process of breaking a complex

topic into smaller parts for a better understanding.
% WIKIPEDIA

The Free Encyclopedia

i - Each time point only saves some scalars.



Canonical Masked Modeling in Time Series

Hard to Reconstruct
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v Direct Reconstruction
Directly masking a portion of time points will seriously ruin the temporal

variations of the original time series.



Multiple Masked Modeling

Benefit Masked Modeling

Multiple Masked Series
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v" Neighborhood Aggregation

Multiple randomly masked series will complement each other.



Neighbornood Aggregation Masked Modeling

Canonical

VS Neighborhood Aggregation

| — MR U= L MA

X Critical information destruction v Multi-information perspective
X Mask ratio sensitive v Information complementation

X Reconstruction difficulty vV Learnable aggregate weight



Overall design of SmMMTM

@ Representations of Original Series

@ Representations of Masked Series
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Overall design of SIMMTM
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Multiple masked series complete each other and adaptive aggregate weight.



Experiment: Overall

Tasks Datasets Semantic
ETTh1,ETTh2 Electricity
ETTm1,ETTm?2 Electricity
Forecasting Weather Weather
Electricity Electricity
Traffic Transportation
SleepEEG EEG
Epilepsy EEG
Classification FD-B Faulty Detection
Gesture Hand Movement
EMG Muscle Responses

v" Two typical time series analysis tasks: Forecasting and Classification.

v" Under multiple experiment settings: In- and Cross domain

v Compared to 6 advanced baselines in 12 databases.



Experiment: Overall

0
L

[o9] [0} O
o v o

~
L%

Classification (Epilepsy to Epilepsy / Acc)

~
o

In-Domain Cross-Domain
o 100
b ¢ < ) ¢ ® Ti-MAE A CoST
%A « & 9 m TST ¢ Random init.
e > 901 # LaST Y SimMTM
9 <4 TFC
B 85 <
Lfé. 80 - ¢
= B 75 0]
® Ti-MAE A CoST € -
W TST ¢ Random init. -.% 701
# LaST Y SimMTM & 65 ®
<4 TFC a )
: - - : - O 60 - : - : -
0.40 0.45 0.50 0.55 0.60 0.65 0.40 0.45 0.50 0.55 0.60 0.65
Forecasting (ETThl to ETThI / MSE) Forecasting (ETTh2 to ETTh| / MSE)

SImMMTM pretraining can benefit

both forecasting and classification tasks.



Model Generality on diverse base models

Dataset ETThl ETTh2 ETTml ETTm?2
Model MSE MAE MSE MAE MSE MAE MSE MAE
Transformer [39]] 1.088 0.836 4.103 1.612 0.901 0.704 1.624 0.901
+ SImMTM 0.927 0.761 3.498 1.487 0.809 0.663 1.322 0.808
Autoformer [47]] 0.573 0.573 0.550 0.559 0.615 0.528 0.324 0.368
+ SimMTM 0.561 0.568 0.543 0.555 0.553 0.505 0.315 0.360
NS Transformer [24] 0.570 0.537 0.526 0.516 0.481 0.456 0.306 0.347
+ SimMTM 0.543 0.527 0.493 0.514 0.431 0.455 0.301 0.345
PatchTST [26] 0.417 0.431 0.331 0.379 0.352 0.382 0.258 0.317
+ Sub-series Masking 0.430] 0.445 0.355] 0.394] 0.341 0.379 0.258 0.318]
+ SImMTM 0.409 0.428 0.329 0.379 0.348 0.378 0.254 0.313

SImMMTM can consistently improve

the forecasting performance of diverse base models.
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Open Source
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The reconstruction process of SimMTM invalves the following four modules: masking, representation learning,
int-wise reconstruction,

Languages
® Python 96.9% Shell 3.1%
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Create and test a Python package on
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Code is available at https://github.com/thum!/SimMTM



https://github.com/thuml/

Foundation Models for Time Series

Training

Model

Data

[Proper Training Strategy]

[Task-Universal Backbone]

[High-quality Large-scale Datal
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